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Online Contention Resolution Schemes (OCRS’s) represent a modern tool for selecting a subset of elements,

subject to resource constraints, when the elements are presented to the algorithm sequentially. OCRS’s have

led to some of the best-known competitive ratio guarantees for online resource allocation problems, with the

added benefit of treating different online decisions—accept/reject, probing, pricing—in a unified manner.

This paper analyzes OCRS’s for resource constraints defined by matchings in graphs, a fundamental structure

in combinatorial optimization. We consider two dimensions of variants: the elements being presented in

adversarial or random order; and the graph being bipartite or general. We improve the state of the art for

all combinations of variants, both in terms of algorithmic guarantees and impossibility results. Some of our

algorithmic guarantees are best-known even compared to Contention Resolution Schemes that can choose the

order of arrival or are offline. All in all, our results for OCRS directly improve the best-known competitive

ratios for online accept/reject, probing, and pricing problems on graphs in a unified manner.

1. Introduction

Contention Resolution Schemes (CRS’s) are tools for selecting a subset of elements, subject to

feasibility constraints that cause “contention” between the different elements to be selected. The

goal is to resolve this contention using randomization, and select each element with the same ex-ante

probability conditional on it being “fit” for selection, or active. Only active elements can be selected,
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and this criterion is what distinguishes CRS’s from other randomized rounding procedures that

have been used for algorithm design in combinatorial optimization since Raghavan and Tompson

(1987). In the CRS model, each element is active independently, according to a known probability.

CRS’s as originally introduced in Chekuri et al. (2014) were offline in that they could observe

whether every element was active before making any selection decisions, with applications in con-

strained submodular optimization. Since then, CRS’s have also been a tool of choice to design

online algorithms (Feldman et al. 2021), unlocking tight performance guarantees in online resource

allocation problems (Jiang et al. 2022), and generally not worsening the guarantees that are pos-

sible (Lee and Singla 2018). These CRS’s sequentially discover whether each element is active; if

so, they must immediately decide whether that element should be selected. (An element cannot be

selected if it would violate the feasibility constraints.) Different CRS’s can be designed depending

on the order in which elements are processed.

The CRS literature is demarcated by the class of resource constraints being considered, and

whether the processing is offline or online (and in the latter case, the processing order). This paper

focuses on resource constraints defined by matchings in graphs which is a fundamental feasibility

constraint in combinatorial optimization, and derives state-of-the-art results for all processing

orders. The definition of matching constraints is that each element is represented by an edge in a

graph, and if selected, consumes two arbitrary resources in the form of its two incident vertices.

We derive online CRS’s that work under arbitrary (adversarial) processing orders and CRS’s with

improved performance guarantees if the edges are processed in a uniformly random order. The

latter guarantees are best-known even compared to offline CRS’s on general graphs.

One of the principle applications of online CRS’s is to the prophet inequality problem. We discuss

this in detail in Appendix A, as well as other applications specific to matching constraints.

1.1. Formal Definitions of Contention Resolution Schemes for Matchings

Let G= (V,E) be a graph. An edge e= (u, v) is said to be incident to vertices u and v, and v is said

to be a neighbor of u (and vice versa). For any vertex v ∈ V , let ∂(v)⊆E denote the set of edges
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incident to v, and for any e= (u, v)∈E, let ∂(e) := ∂(u)∪∂(v) \ {e}. A matching M is a subset of

edges no two of which are incident to the same vertex, i.e. satisfying |M ∩ ∂(v)| ≤ 1 for all v ∈ V .

A vector x∈ [0,1]E lies in the matching polytope of G (which we denote PG), if
∑

e∈∂(v) xe ≤ 1 for

all v ∈ V . In this case, we refer to x as a fractional matching for G.

Fixing a fractional matching x= (xe)e∈E of G, each edge e has an activeness state Xe that realizes

to 1 with probability (w.p.) xe and 0 w.p. 1− xe, independent of everything else. We denote this

random draw as Xe ∼Ber(xe), where Ber(x) represents an independent Bernoulli random variable

of mean x for any x∈ [0,1]. Edges e with Xe = 1 are active.

A contention resolution scheme (CRS) is passed G and x as input and selects a subset of active

edges, under the additional constraint that the selected subset must form a matching. In the original

offline setting, the CRS is also passed (Xe)e∈E, and thus learns the edge states prior to making

its selections. A CRS is then said to be c-selectable if for any graph G and any vector x ∈ PG, it

selects each edge e with probability at least cxe, where c is a constant in [0,1].

A sequential CRS is also passed G and x as input, but initially does not know the edge states

(Xe)e∈E. Instead, an ordering on E is chosen, and the edge states are presented one-by-one to the

sequential CRS using this ordering. Upon learning Xe, it makes an irrevocable decision on whether

or not to select e. Two types of sequential schemes have been defined in the literature depending

on how the ordering is generated: online contention resolution schemes (OCRS), where this order

is chosen by an adversary1; and random-order contention resolution schemes (RCRS), where this

order is chosen uniformly at random.

1.2. Contributions

To describe our results, we define selectability as the maximum value of c for which an OCRS or

RCRS is c-selectable, evaluated on the worst case graph G and vector x ∈ PG for the algorithm.

Without further specification, selectability considers the best possible algorithm and takes a worst

1 Like Ezra et al. (2022) we assume that this adversary is oblivious, in that it fixes the arrival order based on the

algorithm and cannot change the order based on realizations.
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Selectability Bounds General Graphs Bipartite Graphs 2

OCRS of [1] ≥ 0.337 [1] → ≥ 0.344 [§2.1] ≥ 0.337 [1] →≥ 0.349 [§2.2]

≤ 0.361 [§2.3] ≤ 0.382 [§2.3, folklore]

Any OCRS ≤ 0.4 [§2.3] ≤ 3/7 [2]

Any RCRS 3 ≥ 0.45 [3] → ≥ 0.474 [§3.1] ≥ 0.456 [3] → ≥ 0.478 [§3.1]

≤ 0.544 [4] → ≤ 0.5 [§3.3]
Table 1 New results are bolded. “≥” refers to lower bounds on c (algorithmic results), “≤” refers to upper

bounds (impossibility results), and arrows indicate improvement from state of the art. [1], [2], [3], [4], [5] refer to

Ezra et al. (2022), Correa et al. (2022), Pollner et al. (2022), Karp and Sipser (1981) respectively.

case over general graphs, although we also refer to the selectability of a specific algorithm or the

selectability taken over bipartite graphs. By definition, the selectability of a specific algorithm is

worse (smaller) than that of the best algorithm; the selectability for general graphs is worse than

that for bipartite graphs; and the selectability of OCRS is worse than that of RCRS.

Given this understanding, our results are summarized in Table 1. We improve algorithmic results

for CRS’s that select matchings in graphs, on all fronts. We also derive many new impossibility

results, and believe another contribution of this paper to lie in elucidating the limitations of different

algorithms or analyses. We now describe each new result individually, its significance, and sketch

the techniques used to derive it.

1.3. Technical Comparison with Existing Work

Recall that the algorithm must select each edge e with probability at least cxe. The algorithm

is not rewarded for selecting e with probability greater than cxe, so a common idea behind both

2 Our algorithmic result for OCRS holds as long as the graph does not contain 3-cycles. Our algorithmic result for

RCRS holds as long as the graph does not contain 3-cycles or 5-cycles.

3 Our random-order CRS’s provide the best-known selectability guarantees even compared to sequential CRS’s that

can choose the order. Compared to the yet more powerful offline CRS’s, our 0.474-selectable RCRS for general graphs

is still best-known, but a 0.509-selectable offline CRS is known for bipartite graphs (Nuti and Vondrák 2023).
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OCRS and RCRS is to attenuate this probability, by only considering an edge e for selection when

its activeness state and another independent random bit Ae both realize to 1. In this case, we say

that e “survives”, which occurs with a probability that can be calibrated to any value less than xe.

The algorithms we study are all myopic with respect to some appropriately-defined attenuation,

i.e. they select any surviving edge that is feasible to select at its time of arrival.

Existing c-selectable OCRS. For OCRS the state of the art is a myopic OCRS that calibrates

the survival probabilities so that every edge e is selected with probability exactly cxe (Ezra et al.

2022). For this OCRS to be valid, when any edge e= (u, v) arrives, it must be feasible to select (i.e.

neither vertices u, v have already been matched) with probability at least c, so that there is the

possibility of selecting e with probability at least cxe. Ezra et al. (2022) show that c= 1/3≈ 0.333

easily yields a valid algorithm. Then by arguing that the bad events of u being matched and v

being matched cannot be perfectly negatively correlated, or equivalently by providing a non-trivial

lower bound on the probability of both u and v being matched (not to each other), Ezra et al.

(2022) show that the improved value of c= 0.337 is also valid.

Our improvements to OCRS. We consider the same OCRS as Ezra et al. (2022). First we

show that c = 0.349 is valid for bipartite graphs, using a different analysis based on the FKG

inequality. Note that when edge e= (u, v) arrives, u is guaranteed to be matched if it has a neighbor

u′ such that: (i) edge (u,u′) already arrived and survived; and (ii) no edge incident to u′ that

arrived before (u,u′) survived. A neighbor v′ of v satisfying (i)–(ii) can be defined analogously.

We show that u having such a neighbor u′ is positively correlated with v having such a neighbor

v′, by the FKG inequality. Moreover, whether two neighbors u1, u2 of u satisfy condition (ii) are

independent (because there cannot be an edge between u1 and u2). Ultimately this reveals that

the worst case for the existence of both u′ and v′ occurs when u, v are surrounded by edges with

infinitesimally-small x-values, implying that c = 0.349 yields a valid algorithm. We note that it

may be tempting to improve this guarantee by applying FKG directly on the events of u and v

being matched; however we construct an example in Subsection B.5 showing that these events,

surprisingly, may not be positively correlated even on bipartite graphs.
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The preceding argument breaks down for general graphs, both because u′ could be the same

vertex as v′, and because satisfying condition (ii) is no longer independent. To rectify this argument,

we take an approach motivated by Ezra et al. (2022)—u and v will each randomly choose up to one

neighbor satisfying (i), and hope that they end up choosing distinct vertices that also satisfy (ii),

which would again certify both u and v to be matched. Our choice procedure differs from Ezra et al.

(2022) and is designed so that the probabilities of two good events (u, v choosing any neighbors

at all, and (ii) being satisfied) cannot be simultaneously minimized in a worst-case configuration.

Interestingly, this leads to a “hybrid” worst case for general graphs, in which both endpoints u, v

of the arriving edge e neighbor a “large” vertex w with xuw = xvw = 1/2, but otherwise u, v are

surrounded by edges with infinitesimally-small x-values. To prove that this hybrid is the worst

case, we bound an infinite-dimensional optimization problem using a finite one with vanishing loss,

and solve the finite one numerically. This worst case implies that c= 0.344 is valid. We also believe

that our new procedure for u and v to randomly choose neighbors is simpler and more flexible than

the original “witness” argument from Ezra et al. (2022). In Subsection B.4, we demonstrate this

by showing how their bound of c= 0.337 can be recovered through our procedure.

Impossibility results for OCRS. To complement our algorithmic results, we construct a

simple example on which no OCRS can be more than 0.4-selectable, and the OCRS of Ezra et al.

(2022) in particular is no more than 0.361-selectable. This example is related to the worst case

from our analysis of general graphs above, in that it has an edge e connected to two “large” vertices

w. Performance on this example also demonstrates the shortcoming of the OCRS of Ezra et al.

(2022)—it does not discriminate between different states in which an arriving edge could be feasibly

selected. This shortcoming is echoed in the example showing it to be no more than 0.382-selectable

on bipartite graphs.

Existing c-selectable RCRS. For RCRS the state of the art also uses the attenuation frame-

work, with the attenuation bit Ae in this case being set a priori to some value a(e)∈ [0,1], where a

is a function of the edge e. The challenge again lies in lower-bounding the probability of an arriving
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edge e being feasible for selection, in this case by c/a(xe). Brubach et al. (2021) lower-bound this

probability using a condition similar to (ii) above—when e= (u, v) arrives, if there are no edges

incident to u or v that arrived before e and survived (i.e. are active with Ae = 1), then e must

be feasible to select. We refer to these bad edges incident to u or v as relevant. Brubach et al.

(2021) show for many attenuation functions a, in all of which a(e) depends only on xe, that the

probability of e having no relevant edges is at least c/a(xe), with c= (1− e−2)/2≈ 0.432. Pollner

et al. (2022) later identify a barrier of (1−e−2)/2 for the analysis method of Brubach et al. (2021),

and overcome it by deriving a lower bound on the probability of e having exactly one relevant edge,

say f = (u,w), but f being blocked, in that w was already matched when f arrived. Of course, this

lower bound must be 0 if w is only incident to f , so Pollner et al. (2022) also use a more elaborate

a function that heavily attenuates f in this case where ∂(w) = {f}. Combining these ingredients,

Pollner et al. (2022) derive a 0.45-selectable RCRS, that is 0.456-selectable for bipartite graphs.

Our improvements to RCRS. We provide an improved 0.474-selectable RCRS for general

graphs. Our algorithm executes on the 1-regularized version of the graph G, which means that

“phantom” edges and vertices are added to make
∑

e∈∂(v) xe equal to 1 for all v. These phantom

edges serve only the purpose of blocking relevant edges, and allow us to return to simpler attenua-

tion functions based only on xe (which would have been stuck at (1−e−2)/2 without 1-regularity).

Restricting to these simple functions a that map xe to a probability, our technique is to identify

analytical properties of a : [0,1]→ [0,1] that lead to characterizable worst-case configurations for

the arriving e= (u, v) having relevant edges and for these edges being blocked. First, conditioning

on the only relevant edge being say f = (u,w), we formulate analytical constraints on function a

under which the worst case (minimum probability) for f being blocked arises when w is incident

to a single edge other than (u,w) and (v,w). Given this worst case for f being blocked, we can

formulate further constraints on a under which the worst case for e having zero relevant edges or

one blocked relevant edge arises when u, v are surrounded by edges f with infinitesimally-small

xf . We show that there exist functions a : [0,1]→ [0,1] satisfying both sets of constraints, and
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taking the best one yields a 0.474-selectable RCRS for general graphs. For bipartite graphs our

constraints on a get looser (since the optimization for the worst case is more restricted), allowing

us to push the envelope of feasible functions. Moreover, due to the lack of triangles and 5-cycles,

we are able to analyze when each endpoint of u and v simultaneously has its own relevant edge.

Taken together, these properties allow us to choose a different attenuation function which leads to

a 0.478-selectable RCRS. Notably, this surpasses the tight 0.476 selectablity result of Bruggmann

and Zenklusen (2022) for monotone offline contention resolution on bipartite graphs, so our result

shows that monotonicity is more constraining than having to process the edges online in a random

order.

We note that in essence, our 1-regularity reduction achieves the same goals as the elaborate

attenuation function from Pollner et al. (2022). They define an attenuation function which penalizes

edges whose endpoints have small fractional degree via an additional parameter se. The additional

term forces the worst-case input for their RCRS to be 1-regular, in which case the term “se” equals

xe (and so disappears). Afterwards, their computations and our computations proceed similarly,

and they also lower bound the probability that a single “relevant” edge adjacent to e is “blocked”.

Thus, their approach can be thought of as implicitly reducing to 1-regular inputs, whereas we do

this explicitly. This allows us to better “engineer” worst-case configurations through the design of

a : [0,1]→ [0,1], and is best exemplified in the case of bipartite graphs where we are able to analyze

multiple relevant edges. We also find it interesting that our technique leads to the best-known

RCRS despite using attenuation functions that do not take arrival time into account (as is done

in Lee and Singla (2018), Pollner et al. (2022)). In fact, our 0.474-selectable RCRS based on these

simple a functions improves the state of the art even for offline contention resolution schemes and

correlation gaps on general graphs (see the discussion in Pollner et al. (2022)).

Impossibility result for RCRS. We show that no RCRS can be more than 1/2-selectable, on

a complete bipartite graph with n vertices on each side and all edge values equal to 1/n as n→∞.

This is achieved by analyzing the more fundamental problem of online (unweighted) matching on



9

random graphs: when the edges of this graph arrive in a uniformly random order, and active edges

must be irrevocably accepted or rejected, what fraction of vertices can an optimal online algorithm

match? The main challenge here is that an arriving edge (u, v) which is both active and feasible

may not be optimal to accept, if many edges between u or v and another unmatched vertex are

yet to arrive. Nonetheless, we upper-bound the value that an online algorithm can gain through

judiciously rejecting edges this way.

More precisely, we show that the greedy algorithm, which accepts any feasible edge, is suboptimal

up to o(n) terms as n→∞. We do this by tracking the size of the matching constructed by an

arbitrary online algorithm after t≥ 0 edges arrive. Denoting this random variable byM(t), we prove

that E[M(t+1)−M(t) | Ht]≤ 1
n

(
1− M(t)

n2

)2

for an appropriate choice of “typical histories” Ht. On

these histories, the online algorithm knowing which edges have already arrived is not particularly

informative. By applying the “one-sided” differential equation method of Bennett and MacRury

(2023), we conclude that the expected matching size of an arbitrary online algorithm is at most

n/2 + o(n). We note that our approach can be thought of as implicitly reducing to a problem

where each edge is drawn independently with replacement uniformly from the n2 possibilities. In

the problem with replacement, a greedy algorithm can be easily seen to be optimal for all n, and

one can apply the (standard) differential equation method of Wormald et al. (1999) to prove that

it constructs a matching of expected size n/2+ o(n).

All in all, this represents a fundamental barrier for online matching on large random graphs

when edges arrive in a uniformly random order. In this setting, Karp and Sipser (1981) have shown

that an offline algorithm can match 54.4% of the vertices as n→∞, and to our knowledge no

smaller upper bounds have been previously shown for online algorithms. We also remark that

both our result and that of Karp and Sipser (1981) continue to hold if we consider large complete

graphs instead of large complete bipartite graphs. Finally, we mention that Nuti and Vondrák

(2023) recently designed a 0.509-selectable offline contention resolution scheme for bipartite graphs.

Combined with this, our 1/2 impossibility result establishes a separation that offline contention

resolution is strictly easier than random-order contention resolution on bipartite graphs.
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2. Details of Online Contention Resolution Schemes

Definition 1 (Terminology and Notation for OCRS). Let G = (V,E) be a graph with

fractional matching (xe)e∈E passed as input to an OCRS. At the time an edge e ∈ E arrives, we

say that a vertex v ∈ V is matched if an edge incident to v that has already arrived has been se-

lected. We denote this event using matchedv(e), noting that it depends on the random active states

of edges arriving before e and any randomness in the algorithm. We say that an edge e = (u, v)

is blocked if either u or v has been matched by the time e arrives, and denote this event using

blocked(e). Blocked edges, even if active, cannot be selected.

Our improved lower bound for OCRS is based on a new analysis of the algorithm of Ezra et al.

(2022), which we restate in Algorithm 1 using our terminology.

Algorithm 1 OCRS of Ezra et al. (2022)

H[t]

Input: G= (V,E), x= (xe)e∈E, and c∈ [0,1] a constant to be determined later
Output: subset of active edges forming a matchingM
1: M←∅
2: for arriving edges e do
3: Let αe := c/P[blocked(e)], where the denominator is the probability that edge e is not

blocked, taken over the randomness in the activeness of past edges and the algorithm
4: Draw Ae ∼Ber(αe)
5: if e is active, not blocked, and Ae = 1 then
6: M←M∪{e}
7: returnM

Remark 1. In Algorithm 1, αe is a probability over the hypothetical scenarios that could have

occurred, based on what the OCRS knows about the edges that have arrived so far. Computing

these probabilities exactly requires tracking exponentially many scenarios, but fortunately sampling

these scenarios yields an ε loss in selectability given O(1/ε) runtime (Ezra et al. 2022).

We also remark that the values of αe used by Algorithm 1 are fixed once the graph and order

of edge arrival are determined. This is where the assumption that the adversary is oblivious comes

in—the order, and hence the values of αe, must be independent of any realizations.
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We now define some further concepts specific to Algorithm 1. Recall that Xe is an indicator

random variable for the event edge e is active, and Ae is defined in Algorithm 1. We say that e

survives if both Xe and Ae realize to 1, and we let Se = XeAe indicate this event, which is an

independent Bernoulli random variable with mean xeαe. The OCRS of Ezra et al. (2022) can then

be concisely described as “select every surviving unblocked edge”. The survival probabilities are

calibrated so that

P[e∈M] = xeαeP[blocked(e)] = cxe ∀e∈E (1)

(by definition of αe), resulting in a c-selectable OCRS.

However, Algorithm 1 only defines a valid OCRS if αe is a probability in [0,1] for all e∈E. Put

another way, constant c must be small enough such that

P[blocked(e)]≥ c (2)

for every graph G, fractional matching x, and arriving edge e (which would ensure that αe ≤ 1).

Following Ezra et al. (2022), validity can be inductively established by assuming (2) holds for all

e under a given G, x, and arrival order, and then proving that it also holds for an arbitrary edge

e /∈E which could arrive next. Ezra et al. (2022) further observe that if this newly arriving edge is

e= (u, v), then

P[blocked(e)] = 1−P[matchedu(e)∪matchedv(e)]

= 1−P[matchedu(e)]−P[matchedv(e)]+P[matchedu(e)∩matchedv(e)] (3)

= 1− c
∑

f∈∂(u)\e xf − c
∑

f∈∂(v)\e xf +P[matchedu(e)∩matchedv(e)]

(where the final equality holds by (1) and the induction hypothesis). Therefore, the real challenge

and intricacy of the problem lies in bounding the term P[matchedu(e)∩matchedv(e)], and thus the

correlation between u and v being matched (to different partners) in the past.
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2.1. Analysis for General Graphs

We present a new way of analyzing, given a newly arriving edge (u, v), the probability of both u, v

being matched. This will allow us to show that Algorithm 1 remains valid for c= 0.344.

We consider the following sufficient condition for both u, v being matched. Suppose u inspects

all its surviving incident edges, and chooses one (if any exist), and v (independently) does the

same. If these chosen edges are (u,u′) and (v, v′), where u′ and v′ are vertices in V \ {u, v}, then

we call u′ and v′ the candidates of u and v, respectively. Now, if candidate u′ was alone in that

it had no surviving incident edges at the time of arrival of (u,u′), then this guarantees vertex u

to be matched, either to u′, or via a surviving incident edge that arrived before (u,u′). A similar

argument can be made for candidate v′ of vertex v. Therefore, if u′ and v′ are distinct candidates,

and both alone at the arrival times of (u,u′) and (v, v′) respectively, then this guarantees both u

and v to be matched.

We note that Ezra et al. (2022) take a similar approach, but our procedure for choosing candidates

is quite different from their “sampler”, and generally more likely to choose any candidate at all.

Let u1, . . . , uk be vertices in V \ {u, v} such that (u,u1), . . . , (u,uk) are the edges in E incident

to u (recall that E does not include the newly arriving edge (u, v)). If u has multiple surviving

edges (u,ui) it will prioritize choosing the one with the smallest index i; however, it adds some

noise to reduce the likelihood that v (after defining an analogous procedure) will choose the same

candidate. The ordering of vertices u1, . . . , uk will be specified later based on the analysis.

To add this noise, we define a random bit Ru,ui
for each i= 1, . . . , k. We couple Ru,ui

with Su,ui

(the random bit for edge (u,ui) surviving) so that Ru,ui
and Su,ui

are perfectly positively correlated.

Vertex u then chooses ui as its candidate if i is the smallest index for which Ru,ui
realizes to 1.

We let candidateuui
denote this event, noting that u can have at most one candidate, and possibly

none. Now, although the random bits Ru,ui
are coupled with Su,ui

, the bits Su,ui
are independent

from everything else, so we can use independence to deduce that

P[candidateuui
] =E[Ru,ui

]
∏
i′<i

(1−E[Ru,ui′
]) ∀i= 1, . . . , k. (4)
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We define an analogous procedure for the edges (v, v1), . . . , (v, vℓ) incident to v. We will specify the

means of the random bits Ru,ui
and Rv,vj later, after establishing some concepts that bound the

probabilities of edges surviving.

Definition 2. Let e= (u′, v′) be an edge that has already arrived, with u′, v′ being generic ver-

tices in V \ {u, v} (not necessarily candidates). Let xu′(e) :=
∑

f∈∂(u′):f≺e xf , where f ≺ e indicates

that the edge f arrived before e (the sum does not include edge e itself). Similarly, let xv′(e) :=∑
f∈∂(v′):f≺e xf .

Let aloneu′(u′, v′) (respectively alonev′(u
′, v′)) denote the event that u′ (respectively v′) does not

have any surviving incident edges at the time of arrival of edge (u′, v′). We note that Ezra et al.

(2022) use a similar notion in their definition of “witness”, but without the qualifier “at time of

arrival of (u′, v′)”. We need this qualifier in order to make our subsequent argument.

Proposition 1 (proven in §B.1). For any edge e= (u′, v′), the probability of it surviving satis-

fies

cxe

1− c ·max{xu′(e), xv′(e)}
≤ P[Se = 1]≤ cxe

1− cxu′(e)− cxv′(e)
.

Proposition 2 (proven in §B.2). For any edge e= (u′, v′), the probability of a vertex u′ being

alone satisfies P[aloneu′(e)]≥ 1−c−cxu′ (e)
1−c

.

Having established these propositions, we can now use the lower bound in Proposition 1 to define

the probabilities for the random bits Ru,ui
. We would like to ensure that whenever u chooses vertex

ui as its candidate, edge (u,ui) actually survives. This will be the case whenever E[Ru,ui
]≤E[Su,ui

],

since the bits Ru,ui
, Su,ui

are coupled using perfect positive correlation. By the lower bound in

Proposition 1, this is ensured if we set

E[Ru,ui
] :=

cxu,ui

1− cxui
(u,ui)

(5)

for all i= 1, . . . , k, and similarly set E[Rv,vj ] :=
cxv,vj

1−cxvj (v,vj)
for all j = 1, . . . , ℓ. These values are set

so that if xui
(u,ui) is large, which worsens the lower bound of

1−c−cxui (u,ui)

1−c
on the probability of
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ui being alone, then at least we have the consolation prize that E[Ru,ui
] is large, making it more

likely that u has a candidate. This will prevent a worst-case configuration from simultaneously

minimizing the two good events of ui being alone and u having a candidate, which is precisely

the motivation behind our choice procedure and definition of aloneui
(u,ui) that differs from Ezra

et al. (2022). We note that the analysis of Ezra et al. (2022) is recovered if instead of (5), we

set E[Ru,ui
] :=

cxu,ui
1−cxu(u,ui)

, which also validly satisfies E[Ru,ui
] ≤ E[Su,ui

] (by the lower bound in

Proposition 1). We explain this analysis in Subsection B.4 as well as demonstrate why it gets stuck

at a guarantee worse than ours.

Having defined these random bits, we are ready to state and prove our main result, which lower-

bounds the selectability of Algorithm 1 using an elementary optimization problem.

Definition 3. For any positive integer k and non-negative real number b, let

AdvMink(b) := inf b2

(
k∑

i=1

yi− byi + by2
i

1+ byi

∏
i′<i

1

1+ byi′

)(
k∑

i=1

zi− bzi + bz2i
1+ bzi

∏
i′<i

1

1+ bzi′

)

− b2
k∑

i=1

yi− byi + by2
i

1+ byi

zi− bzi + bz2i
1+ bzi

∏
i′<i

1

1+ byi′

1

1+ bzi′

s.t.
k∑

i=1

yi =
k∑

i=1

zi = 1

yi−1 ≥ yi, zi−1 ≥ zi, yi + zi ≤ 1, ∀i= 1, . . . , k

yi, zi ≥ 0 ∀i= 1, . . . , k.

Theorem 1 (proven in §B.3).

(i). Algorithm 1 is c-selectable for any c satisfying 1− 3c+ infkAdvMink(
c

1−c
)≥ 0.

(ii). c= 0.3445 satisfies 1− 3c+ infkAdvMink(
c

1−c
)≥ 0.

Therefore, Algorithm 1 provides a 0.3445-selectable OCRS for general graphs.

Note that for fixed b, AdvMink(b) is decreasing in k, so infkAdvMink(b) = limk→∞AdvMink(b).

Remark 2. Part (ii) of Theorem 1 is proved with the aid of computational verification, after

bounding the difference between limk→∞AdvMink(b) and an optimization problem with 2K vari-

ables as O(1/K). We then use Non-Linear Programming (NLP) solver COUENNE, modeled with
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JuMP (Dunning et al. 2017), providing a link to the code. The NLP solver establishes a provable

lower bound on the infimum value of this finite-dimensional NLP, allowing us to finish the proof.

Interestingly, the optimal solution suggested by the solver for a large K is a “hybrid” in which

y1 = z1 = 1/2, and all other values of yi, zi are infinitesimally-small.

2.2. Improvement for Bipartite Graphs

We improve the analysis of Algorithm 1 in the special case where G= (V,E) is a bipartite graph.

Adopting the same proof skeleton and terminology, our goal is to lower-bound, given a newly

arriving edge (u, v) /∈E, the probability that vertices u and v have both been matched.

In Subsection 2.1, we analyzed the probability of the sufficient condition that u and v “randomly

chose” distinct candidates who were alone. In this subsection, we can analyze the easier-to-satisfy

condition of u and v both having candidates who are alone. The reason for this is twofold: the

neighbors u1, . . . , uk of u (i.e. the potential candidates) are clearly distinct from the neighbors of v,

because edge (u, v) cannot form a 3-cycle; and, the neighbors u1, . . . , uk being alone are independent

events, because there cannot be any edges between them (which again would form a 3-cycle).

By lower-bounding the probability of this easier-to-satisfy condition, we show that Algorithm 1

is 0.349-selectable for all graphs without a 3-cycle (which includes all bipartite graphs), improving

upon the earlier guarantee of 0.344 for general graphs.

Theorem 2 (proven in §B.5). On bipartite graphs, Algorithm 1 provides a c-selectable OCRS

for any value of c∈ [0,1/2] satisfying 1− 3c+
(
1− exp(− c(1−2c)

(1−c)2
)
)2

≥ 0. Therefore, Algorithm 1 is

0.349-selectable.

In the proof of Theorem 2, we use the FKG inequality to argue that the events of u and v satisfying

the condition of having candidates who are alone are positively correlated. It may be tempting to

argue that the events of u and v being matched are also positively correlated, under the intuition

that in a bipartite graph, u and v are competing for different partners. However, we show in

Subsection B.5 that this is false, justifying why we are arguing for positive correlation on this

sufficient condition instead.
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2.3. Impossibility Results for OCRS

The first two impossibility results use the following construction, which to our knowledge is new.

Example 1. Let G be a complete graph on vertices V = {1,2,3,4}, and consider the fractional

matching whose edge values are x12 = x23 = x34 = x41 = (1− ε)/2 along a 4-cycle and x13 = x24 = ε

on the diagonals. ε is a small positive constant that we will take to 0. The arrival order of edges,

known in advance, is: (1,2), (3,4) (a diametrically opposite pair of edges), followed by (2,3), (4,1)

(another diametrically opposite pair), followed by (1,3), (2,4) (the diagonal edges).

Proposition 3 (proven in §B.7). On the G,x given in Example 1, any OCRS is no more than

0.4-selectable.

Proposition 4 (proven in §B.8). On Example 1, the OCRS of Ezra et al. (2022) is no more

than 0.361-selectable.

Proposition 5 (proven in §B.9). The OCRS of Ezra et al. (2022) is no more than 0.382-

selectable for bipartite graphs.

3. Details of Random-Order Contention Resolution Schemes

We reuse the terminology and notation about graphs and matching polytopes defined in Subsec-

tion 1.1 and add the following definitions below.

Definition 4 (Terminology and Notation for RCRS). Suppose the edges of G = (V,E)

arrive uniformly at random. In our analysis, we will treat each edge e as having an arrival time

Ye drawn independently and uniformly from [0,1]. Edges then arrive in increasing order of arrival

times.

Also, if x= (xe)e∈E satisfies constraints
∑

e∈∂(v) xe ≤ 1 for all v ∈ V as equality, then we then say

that G is 1-regular (with respect to x), and refer to (G,x) as a 1-regular input.

Remark 3. Reformulating the random arrivals in this way has become a standard technique in

online matching (for instance, see Ehsani et al. (2018), Huang et al. (2018)), and was originally
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Algorithm 2 Attenuate-ROM

Input: Graph G= (V,E) and a fractional matching x= (xe)e∈E.
Output: subset of active edges forming a matchingM.
1: M←∅.
2: for arriving edges e∈E do
3: Draw Ae ∼Ber(a(xe)) independently. ▷ attenuate with probability a(xe)
4: if e is active, not blocked and Ae = 1 then
5: M←M∪{e}.
6: returnM

used to analyze the Ranking algorithm in Devanur et al. (2013). For RCRS, it was first employed

by Lee and Singla (2018), and has since been used by Fu et al. (2021), Brubach et al. (2021),Pollner

et al. (2022) and MacRury and Ma (2023).

Lemma 1 (proven in §C). If there exists a c-selectable RCRS for all 1-regular inputs, then there

exists a c-selectable RCRS for all inputs via a reduction to a 1-regular input. Moreover, this reduc-

tion can be computed efficiently, and preserves the absence of cycles of length 3 and 5.

Remark 4. Although not needed for our results, in Lemma EC.2 of Appendix D we also present

a reduction that preserves bipartiteness.

Let us now fix an arbitrary attenuation function a : [0,1]→ [0,1]. Consider the template RCRS

in Algorithm 2, which is presented the edges of a graph G= (V,E) in random order. We consider

Algorithm 2 with a quadratic attenuation function a1(x) := (1 − (3 − e)x)2 when working with

general graphs, and a different attenuation function, a2(x) := (1−x)4/(ex−ex)2 for x∈ [0,1) where

a2(1) := limx→1− a(x) = 4/e2, when working with bipartite graphs.

Theorem 3 (proven in §3.1). If a(x) = a1(x), where a1(x) := (1− (3− e)x)2, then Algorithm 2

is e2−4e3+e4+20e−22
4e2

≥ 0.474035 selectable for 1-regular general graphs.

Theorem 4 (proven in §3.1). If a(x) = a2(x), where a2(x) := (1 − x)4/(ex − ex)2, then Algo-

rithm 2 is e6+e4−42−4e2

2e6
≥ 0.478983 selectable for 1-regular graphs without cycles of length 3 or 5.

As in the adversarial order setting, we define Se :=Xe ·Ae and say that e survives (the attenuation

function a) if Se = 1. Observe that each edge e survives independently with probability s(xe) :=
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xea(xe). We say that f ∈ ∂(e) is relevant (for e), provided Yf < Ye and f survives (recall that

∂(e) = ∂(u)∪ ∂(v) \ {e} if e= (u, v)). Otherwise, f is irrelevant (for e). Denote the relevant edges

of e by Re. Observe that if e survives and Re = ∅, then e is selected by Algorithm 2 (note that the

latter event is equivalent to aloneu(e)∩ alonev(e) in our OCRS terminology). Brubach et al. (2021)

use a different attenuation function a to argue that P[Re = ∅ |Xe = 1]≥ (1− e−2)/2≥ 0.432, and

since a(0) = 1, it is not hard to see that their analysis is tight4. Our improvement comes from

restricting to 1-regular inputs, as this allows e to be matched even when Re ̸= ∅. Specifically, when

|Re|= 1, we use the 1-regularity of G to lower bound the probability f ∈Re is not matched. This

yields a lower bound on P[e∈M,Re ̸= ∅ |Xe = 1], and combined with the previous lower bound on

P[Re = ∅ |Xe = 1], allows us to surpass a selection guarantee of (1− e−2)/2. We now provide some

additional definitions and notation needed to formalize this argument. These are similar to what

is used in Pollner et al. (2022) after they implicitly reduce to 1-regular inputs via vertex-based

attenuation (see Subsection 1.3 for a more detailed discussion on this).

Definition 5. Fix e= (u, v) ∈E, and suppose that f ∈ ∂(e) has vertex w not in e. We say that

h∈ ∂(w) \ {(u,w), (v,w)} is a simple-blocker for f , indicated by the event sblf (h), if:

1. h is relevant for f (i.e., Sh =Xh ·Ah = 1, and Yh <Yf ).

2. Each h′ ∈ ∂(h) \ ∂(e) is irrelevant for h.

We denote the event in which f has some simple-blocker by sblf .

Observe the following basic properties of the simple-blocker definition:

Proposition 6. For any f ∈ ∂(e):

1. f has at most one simple-blocker.

2. The event sblf is independent from the random variables Sf and (Yg, Sg)g∈∂(e)∪{e}\{f}.

4 Consider G= (V,E) with V = {ui, vi}ni=0 and E = {(u0, v0)} ∪ {(u0, ui), (v0, vi)}ni=1. The activeness probability xe

of every e ∈E is 1/(n+1). When (u0, v0) survives, the RCRS of Brubach et al. (2021) selects (u0, v0) if and only if

Ru0,v0 = ∅. Moreover, since a(0) = 1, this occurs with probability exactly (1− e−2)/2 as n→∞.
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Note that the first item of Proposition 6 is true, since if f had two simple blockers, then one of them

must be relevant for the other, which contradicts Definition 5. The second item follows immediately

since sblf does not depend on the random variables (Yg, Sg)g∈∂(e)∪{e}\{f} in Definition 5.

Proposition 7. If e survives, |Re| ≤ 1, and each f ∈Re satisfies sblf , then e∈M.

Suppose |Re|= 1, where f = (u,w) ∈Re. Proposition 7 follows by observing that if sblf (h) occurs

for some h ∈ ∂(w) \ {(u,w), (v,w)}, then h must be matched prior to the arrival of f , and so f

is not matched. Since every remaining edge of ∂(e) \ {f} is irrelevant for e, and Se = 1, e will be

matched when it arrives.

3.1. Analysis for General Graphs

Throughout this section, we analyze Algorithm 2 when executed with the quadratic attenuation

function a(x) = (1− (3− e)x)2. However, we are careful to isolate the required analytic properties

of a as we proceed through the argument. (See Propositions 8, 9 and 10).

We consider the case when there is at most one relevant edge; that is, |Re| ≤ 1. Observe first

that by Proposition 12,

P[e∈M | Se = 1]≥ P[|Re|= 0]+
∑

f∈∂(e)

P[sblf and Re = {f}]. (1)

In order to lower bound the r.h.s. of (1), it will be convenient to first condition on Ye = y for

an arbitrary y ∈ [0,1]. The expression P[|Re| = 0 | Ye = y] is then easy to control, since |Re| is

distributed as
∑

f∈∂(e)Ber(ys(xf )) where the Bernoulli’s are independent, and so

P[|Re|= 0 | Ye = y] =
∏

f∈∂(e)

ℓ(xf , y), (2)

where ℓ(xf , y) := 1−ys(xf ) is the probability that f is irrelevant. For an edge f ∈ ∂(e) with vertex

w not in e, we now lower bound P[sblf | Re = {f}, Ye = y]. In order to do so, we first lower bound

the likelihood that h ∈ ∂(w) \ {(u,w), (v,w)} is a simple-blocker for f , conditional on Re = {f}.

Note that if f = (w,u) (or f = (w,v)), then we define f c := (w,v) (respectively, f c := (w,u)) to be

the pair of f in the triangle {(u, v), (w,v), (w,u)}.
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Lemma 2 (First-order minimization: proven in §C.2). If f has vertex w not in e, then for

each h∈ ∂(w) \ {f, f c},

P[sblf (h) | Re = {f}, Ye = y]≥ s(xh)

2(1−xh)−xf −xfc

(
1− 1− e−(2(1−xh)−xf−xfc )y

(2(1−xh)−xf −xfc)y

)
. (3)

In order to prove Lemma 2, we show that the minimum probability of the event sblf (h) corresponds

to when all the edges h′ ∈ ∂(h) \ ∂(e) have infinitesimally small values. This is implied by the

following analytic properties of the attenuation function a:

Proposition 8 (First-order minimization: proven in §C.3). For all y ∈ [0,1], the function

x→ ln(1− yxa(x)) is convex. Moreover, a(0) = 1, and a is continuous and decreasing on [0,1].

Next, we lower bound the probability that f has some simple-blocker, conditional on f ∈Re.

Lemma 3 (Second-order minimization: proven in §C.4). For each f ∈ ∂(e),

P[sblf | Re = {f}, Ye = y]≥ s(1−xf −xfc)

xf +xfc

(
1− 1− e−(xf+xfc )y

(xf +xfc)y

)
=: T (xf +xfc , y).

We prove Lemma 3 by characterizing the minimum probability of the event sblf . This minimum

occurs when w of f = (w,u) has a single neighbor (other than u and w), and its corresponding

edge value is 1− xf − xfc . Note that this is the opposite worst-case in comparison to Lemma 2.

Our proof relies on the following property of a:

Proposition 9 (Second-order minimization: proven in §C.5). For all x ∈ [0,1], a′(x)
a(x)

+

4
1−x
− 2(1−exp(x−1))

exp(x−1)−x
≤ 0.

Recall that by Proposition 6, for each f ∈ ∂(e) the event sblf is independent from random

variables (Sg, Yg)g∈∂(e)\{f}. We can therefore apply Lemma 3, to get that

∑
f∈∂(e)

P[sblf ,Re = {f} | Ye = y]≥
∑

f∈∂(e)

T (xf +xfc , y) · s(xf )y
∏

g∈∂(e)\{f}

ℓ(xg, y).

By combining this equation with (2), and using (1), we get that P[e∈M | Se = 1]≥
∫ 1

0
objG(e, y)dy,

where for y ∈ [0,1],

objG(e, y) :=
∏

g∈∂(e)

ℓ(xg, y)+
∑

f∈∂(e)

T (xf +xfc , y) · s(xf )y
∏

g∈∂(e)\{f}

ℓ(xg, y). (4)
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We must now identify the infimum of (4) over graphs which contain e, and whose fractional

matching assigns xe to e. We claim that no matter the value of xe, this occurs as maxf∈∂(e) xf → 0

(i.e., the Poisson regime). In order to prove this, we apply a vertex-splitting procedure. Specifically,

fix any k ≥ 1, and replace an arbitrary vertex w ∈N(u)∪N(v) \ {u, v} with k copies of itself, say

w1, . . . ,wk. Let Gk = (Vk,Ek) be the resulting graph, whose fractional matching x′ is constructed by

splitting the values of the edges incident to w uniformly amongst w1, . . . ,wk, and keep the remaining

edge values the same. That is, x′
wi,r

:= xw,r/k for each i∈ [k] and r ∈ V \{w1, . . . ,wk}, and x′
f := xf

for all other f ∈ E. We lower bound
∫ 1

0
objG(e, y)dy by the limiting value of

∫ 1

0
objGk

(e, y)dy as

k→∞.

Lemma 4 (Vertex Splitting: proven in §C.6).
∫ 1

0
objG(e, y)dy≥ limk→∞

∫ 1

0
objGk

(e, y)dy.

Lemma 4 relies on the following technical properties of a:

Proposition 10 (Vertex splitting: proven in §C.7). For all x1, x2 ∈ [0,1],

1. y→ ℓ(x1, y)ℓ(x2, y)− exp(−(x1 +x2)y) is non-negative for y ∈ [0,1].

2. Recalling the definition of the function T (x1 +x2, y) from Lemma 2, the function

y→ ℓ(x1, y)ℓ(x2, y)+T (x1+x2, y)(ys(x1)ℓ(x2, y)+ys(x2)ℓ(x1, y))−e−(x1+x2)y

(
1+

(x1 +x2)a(1)y
2

2

)

is initially non-negative for y ∈ [0,1], and changes sign at most once. Moreover, its integral

over [0,1] is non-negative.

We also make use of the following elementary lower bound on the integral of the product of two

functions.

Proposition 11. Suppose that λ,ϕ : [0,1]→ R are integrable, λ ≥ 0, and λ is non-increasing.

Moreover, assume that there exists 0≤ zc ≤ 1 such that ϕ(z)≥ 0 for all z ∈ [0, zc], and ϕ(z)≤ 0 for

all z ∈ [zc,1]. Then, ∫ 1

0

λ(z)ϕ(z)dz ≥ λ(zc)

∫ 1

0

ϕ(z)dz



22

Proof of Theorem 3. Suppose G∗
k is the graph formed after splitting each vertex of NG(u) ∪

NG(v)\{u, v} into k≥ 1 copies. In order to compare
∫ 1

0
objG(e, y)dy with limk→∞

∫ 1

0
objG∗

k
(e, y), we

can consider the sequence of |NG(u)∪NG(v)\{u, v}| graphs formed by starting withG, and splitting

a (new) vertex of NG(u) ∪NG(v) \ {u, v} in each step. By applying Lemma 4 to the consecutive

pairs of graphs in the sequence, we can combine all the inequalities to get that
∫ 1

0
objG(e, y)dy ≥

limk→∞
∫ 1

0
objG∗

k
(e, y)dy. On the other hand, for each y ∈ [0,1],

objG∗
k
(e, y) =

∏
g∈∂(e)

(ℓ(xg/k, y))
k +

∑
f∈∂(e)

T ((xf +xfc)/k, y) · s(xf/k)y
∏

g∈∂(e)\{f}

(ℓ(xg/k, y))
k. (5)

Now, by taking k→∞, and applying the same asymptotic computations from the proof of Lemma

4,

lim
k→∞

objG∗
k
(e, y) =

1+
∑

f∈∂(e)

a(1)xfy
2

2

e−
∑

f∈∂(e) xfy.

Thus, since
∑

f∈∂(e) xf = 2(1−xe), limk→∞ objG∗
k
(e, y) = exp(−2y(1−xe)) (1+a(1)(1−xe)y

2), and

so ∫ 1

0

objG(e, y)dy≥
∫ 1

0

e−2(1−xe)y
(
1+ a(1)(1−xe)y

2
)
dy, (6)

where we have exchanged the order of integration and point-wise convergence by using the domi-

nated convergence theorem. Now, if we multiply (4) by a(xe), then

P[e∈M |Xe = 1]≥ a(xe) ·
∫ 1

0

objG(e, y)dy.

Thus, after applying (6),

a(xe) ·
∫ 1

0

objG(e, y)dy≥ a(xe)

∫ 1

0

e−2y(1−xe)(1+ a(1)(1−xe)y
2)dy. (7)

Upon evaluating the integral in (7), we get a function of xe whose minimum occurs at xe = 0 when

it takes on the value e2−4e3+e4+20e−22
4e2

≥ 0.474035. Theorem 3 is thus proven. □

3.2. Improvement for Bipartite Graphs

We now consider when Algorithm 2 is executed on a bipartite graph G = (V,E) using the

attenuation function a(x) = (1−x)4/(ex− ex)2. In fact, everything in this section holds for graphs
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without cycles of length 3 or 5. In particular, the 1-regular reduction of Lemma EC.1 preserves the

lack of triangles and 5-cycles. However, to simplify the resulting terminology, we state everything

for bipartite graphs with the understanding that our ≈ 0.4789 selectability result holds slightly

more generally.

Our proof follows the same structure as the general graph case in that after fixing e= (u, v)∈E,

we consider the relevant edges Re of e. The proof that our new attenuation function satisfies the

analytic properties of Proposition 8 follows in the same way as before, and so we omit the argument.

It also satisfies Proposition 9 by definition, as a is unique solution to the differentiation equation

a′(x)
a(x)

+ 4
1−x
− 2(1−exp(x−1))

exp(x−1)−x
= 0 with initial condition a(0) = 1. Recalling the definition of the function

T (x, y) as stated in Lemma 2, we can therefore apply the argument from the previous section to

get that

P[|Re| ≤ 1,∩f∈Resblf | Ye = y]≥
∏

g∈∂(e)

ℓ(xg, y)+
∑

f∈∂(e)

T (xf , y) · s(xf )y
∏

g∈∂(e)\{f}

ℓ(xg, y), (8)

where we’ve used the fact that xfc = 0 for each f ∈ ∂(e), as G has no triangles. After integrating

over y ∈ [0,1], it is possible to argue that the infinum of the r.h.s. of (8) occurs as maxf∈∂(e) xf → 0,

when it takes value ≈ 0.4761. Combined with Proposition 7, one can then prove a lower bound

of ≈ 0.4761 for RCRS selectability on bipartite graphs. However, since our goal is to exceed the

tight ≈ 0.4762 selectability bound for monotone contention resolution schemes on biparite graphs,

we now go beyond the case of |Re| ≤ 1 and handle when each of u and v has its own relevant

edge. Specifically, define Ru = ∂(u) \ {e} ∩Re and Rv = ∂(v) \ {e} ∩Re as the relevant edges (for

e) incident to u and v, respectively. The following variation of Proposition 7 is easily proven:

Proposition 12. If e survives, |Ru|= |Rv|= 1, and each f ∈Re satisfies sblf , then e∈M.

Due to Proposition 12, our goal is to lower bound the probability that sblf occurs for each f ∈Re,

and |Ru| = |Rv| = 1. We first show that since G is bipartite, and thus has no 5-cycles, we can

handle u and v separately.
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Lemma 5 (proven in §C.7). For each y ∈ [0,1] and f ∈ ∂(u) \ {e}, f ′ ∈ ∂(v) \ {e},

P[sblf ∩ sblf ′ | Ye = y,Ru = {f},Rv = {f ′}]≥ T (xf , y) ·T (xf ′ , y),

where T (x, y) = s(1−x)

x

(
1− 1−e−xy

xy

)
, and s(1−x) = (1−x)a(1−x).

By applying Lemma 5, P[|Ru|= |Rv|= 1,∩f∈Resblf | Ye = y] is lower bounded by

∑
f∈∂(u)\{e},f ′∈∂(v)\{e}

T (xf , y)T (xf ′ , y) · s(xf )s(xf ′)y2
∏

g∈∂(e)\{f,f ′}

ℓ(xg, y).

Thus, if

objG\e(u, y) :=
∏

g∈∂(u)\e

ℓ(xg, y)+
∑

f∈∂(u)\e

T (xf , y) · s(xf )y
∏

g∈∂(u)\{f,e}

ℓ(xg, y),

(where objG\e(v, y) is defined analogously) then combined with (8), we get that

P[|Ru| ≤ 1, |Rv| ≤ 1,∩f∈Resblf | Ye = y]≥ objG\e(u, y) · objG\e(v, y).

As a result, Propositions 7 and 12 imply that P[e∈M | Se = 1] is lower bounded by

∫ 1

0

objG\e(u, y) · objG\e(v, y)dy (9)

Our goal is now to identify the infimum of (9) restricted to bipartite graphs which assign fractional

value xe to e. For k≥ 1, let us consider the same vertex splitting procedure as in the general graph

case, where we select an arbitrary vertex of NG(u)∪NG(v) \ {u, v} to construct Gk. Without loss,

let us assume that the vertex split is from NG(u) \ {v}. Note that the resulting graph Gk will not

have any cycles of length 3 or 5, as G has none. Before stating the bipartite version of Lemma 4,

we need an additional lemma which says that objG\e(v, y) is non-increasing as a function of y.

Roughly speaking, we prove this by considering an alternative input G∗ which contains the edge

e = (u, v), as well as NG(u) ∪NG(v) \ {u, v}. If one executes Algorithm 2 on G∗ conditional on

Ye = y, then objG\e(v, y) is the probability that v has at most one relevant edge and is matched by

time y ∈ [0,1]. This probability gets smaller the later e arrives, which is exactly what we wish to

prove.
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Lemma 6 (proven in §C.7). The function y→ objG\e(v, y) is non-negative and non-increasing

for y ∈ [0,1].

Lemma 7 (Bipartite-free vertex splitting: proven in §C.7).

∫ 1

0

objG\e(u, y) · objG\e(v, y)dy≥ lim
k→∞

∫ 1

0

objGk\e(u, y) · objGk\e(v, y)dy

Lemma 7 relies on the following properties of a, which we note are a special case (i.e, weakening)

of those presented in Proposition 10. The proof follows identically to the proof of Proposition 10,

and so we omit the argument.

Proposition 13. For all x∈ [0,1]:

1. y→ ℓ(x, y)− exp(−xy)≥ 0 is a non-negative function for y ∈ [0,1]

2. The function y→ ℓ(x, y) + ys(x)T (x, y)− e−xy
(
1+ xa(1)y2

2

)
is initially non-negative for y ∈

[0,1], and changes sign at most once. Moreover, its integral over [0,1] is non-negative.

The proof of Theorem 4 now follows similarly to the proof of Theorem 3, and so we just provide

an outline where we the indicate differences in the asymptotic computations.

Proof of Theorem 4. We can use Lemma 7 to conclude that no matter the value of xe, the

infimum of (9) occurs as maxf∈∂(e) xf → 0. Moreover, the same asymptotic computation used in

(6) can be applied to objG\e(u, y) and objG\e(v, y) individually, with the difference being that the∑
f∈∂(e) xf = 2(1− xe) term is replaced by

∑
f∈∂(u)\e xf =

∑
f∈∂(v)\e xf = 1− xe. Thus, applied to

(9), we get that

P[e∈M | Se = 1]≥
∫ 1

0

(
e−(1−xe)y

(
1+

a(1)(1−xe)

2
y2

))2

dy, (10)

and so

P[e∈M |Xe = 1]≥ a(xe)

∫ 1

0

(
e−(1−xe)y

(
1+

a(1)(1−xe)

2
y2

))2

dy.

After evaluating the above integral, we get a function of xe whose minimum occurs at xe = 0 when

it takes on the value e6+e4−42−4e2

2e6
≥ 0.478983. The proof is thus complete. □



26

3.3. Impossibility Result for RCRS

Theorem 5. No RCRS is better than 1/2-selectable on bipartite graphs.

In order to prove Theorem 5, we again analyze the complete 1-regular bipartite graph with 2n

vertices and uniform edge values, except instead of adversarially chosen edge arrivals, we work

with random order edge arrivals. Let G= (U1,U2,E) where E = U1 ×U2, and |U1|= |U2|= n for

n≥ 1, and set xe = 1/n for all e∈E. Once again, we work in the asymptotic setting as n→∞. We

say that a sequence of events (En)n≥1 occurs with high probability (w.h.p.), provided P[En]→ 1 as

n→∞.

Lemma 8. For any RCRS which outputs matching M on G, E[|M |]≤ (1+o(1))n

2
.

Assuming Lemma 8, Theorem 5 then follows immediately.

To prove Lemma 8, we consider an algorithm for maximizing E[|M |] and show that the cardinality

of the matching cannot exceed (1+o(1))n

2
in expectation. Without loss of generality, we can assume

such an algorithm is deterministic (this follows via an averaging argument), even though we will

refer to it colloquially as an “RCRS”.

For each 1≤ t≤ n2, let Ft be the tth edge of G presented to the RCRS, and denote its state by

XFt (clearly, XFt ∼ Ber(1/n)). Observe that if Et := {F1, . . . ,Ft}, then conditional on Et, Ft+1 is

distributed u.a.r. amongst E \Et for 0≤ t≤ n2−1. IfMt is the matching constructed by the RCRS

after t rounds, then since the RCRS is deterministic,Mt is a function of (Fi,XFi
)ti=1. Thus,Mt is

measurable with respect to Ht, the sigma-algebra generated from (Fi,XFi
)ti=1 (here H0 := {∅,Ω},

the trivial sigma-algebra). We refer to Ht as the history after t steps. It will be convenient to define

W (t) := n · |Mt| for each 0≤ t≤ n2. We can think of W (t) as indicating the weight of the matching

Mt, assuming each edge of G has weight n.

Let w(z) := z/(1 + z) for each real z ≥ 0. Note that w is the unique solution to the differential

equation w′ = (1−w)2 with initial condition w(0) = 0. By applying the differential equation method

(Wormald et al. 1999), one can show the greedy algorithm returns a matching of weight (1 +

o(1))w(t/n2)n2 after 0 ≤ t ≤ n2 steps. We implicitly prove that greedy is asymptotically optimal

by arguing that w.h.p. the random variable W (t)/n2 is upper bounded by (1+ o(1))w(t/n2).
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Proposition 14. For each constant 0≤ ε < 1, W (t)≤ (1+o(1))w(t/n2)n2 for all 0≤ t≤ εn2 with

probability at least 1− o(1/n2).

We emphasize that in Proposition 14, a constant ε is fixed first, and n is taken to∞ afterward. As

we take constant ε to be arbitrarily close to 1, the 1/2 upper bound in Lemma 8 is established. We

now provide the proof of this fact. The rest of this section is then devoted to proving Proposition 14.

Proof of Lemma 8 using Proposition 14. Fix 0≤ ε < 1. Observe that Proposition 14 implies

E[W (εn2)]≤ (1− o(1/n2))(1+ o(1))w(ε)n2 + o(1/n2)εn2 = (1+ o(1))w(ε)n2, (11)

where the o(1/n2)εn2 term uses the bound that W (εn2) cannot exceed the expected weight of

active edges up to time εn2, which is εn2. Moreover, the same bound yields E[W (n2)−W (εn2)]≤

(1− ε)n2. Thus, E[W (n2)]≤ (1+ o(1)) ε
1+ε

n2+(1− ε)n2, and so after dividing by n2, E[|Mn2 |]/n≤

(1+ o(1)) ε
1+ε

+(1− ε). Since this holds for each 0≤ ε < 1, and ε
1+ε

+(1− ε)→ 1/2 as ε→ 1, we get

that

E[|Mn2 |]
n

≤ (1+ o(1))
1

2
.

As E[|Mn2 |] is an upper bound on the expected size of any matching created by an RCRS, the

proof is complete. □

In order to prove Proposition 14, for each constant 0 ≤ ε < 1, and 0 ≤ t ≤ εn2, we first upper

bound the expected one-step changes ofW (t), conditional on the current historyHt. More formally,

we upper bound E[∆W (t) | Ht], where ∆W (t) :=W (t+1)−W (t). Our goal is to show that

E[∆W (t) | Ht]≤ (1+ o(1))

(
1−W (t)

n2

)2

.

It turns out that this upper bound only holds for most instantiations of the random variables

(Fi)
t
i=0 (upon which the history Ht depends). We quantify this by defining a sequence of events,

(Qt)
εn2

t=0, which occur w.h.p., and which help ensure the upper bound holds.

Fix a pair of vertex subsets (S1, S2), where Sj ⊆ Uj for j = 1,2. We say that (S1, S2) is large,

provided |Sj| ≥ n/2 for j = 1,2. Given 0≤ t≤ n2, we say that (S1, S2) is well-controlled at time t,

provided

|Lt ∩S1×S2| ≤ (1+n−1/3)|S1||S2|
(
1− t

n2

)
, (12)
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where Lt :=E \Et denotes the edges which have yet to arrive after t rounds. We define the event

Qt to occur, provided each pair of large vertex subsets is well-controlled at time t. Observe that

the event Qt is Ht-measurable.

Lemma 9. For any constant 0≤ ε < 1, P[∩εn2

i=0Qi]≥ 1− o(1/n2).

Proof of Lemma 9. We shall prove that for each 0≤ i≤ εn2, Qi holds with probability at least

1− o(1/n4). Since there are εn2 ≤ n2 rounds, this will imply that P[∩εn2

i=0Qi] ≥ 1− o(1/n2) after

applying a union bound.

Observe first that Li = E \ Ei is a uniformly random subset of E of size n2 − i. Thus, |Li ∩

S1×S2| is distributed as a hyper-geometric random variable on a universe of size n2 with success

probability |S1||S2|/(n2 − i) (we denote this by |Li ∩ S1 × S2| ∼ Hyper(n2, |S1||S2|, n2 − i). Now,

the distribution Hyper(n2, |S1||S2|, n2− i) is at least as concentrated about its expectation as the

binomial distribution, Bin(n2, |S1||S2|/(n2− i)) (see Chapter 21 in Frieze and Karoński (2015) for

details). As such, by standard Chernoff bounds, if µ := |S1||S2|
(
1− i

n2

)
, then for each 0<λ< 1,

P[|Li ∩S1×S2| ≥ (1+λ)µ]≤ exp

(
−λ2µ

3

)
.

By assumption, |S1||S2| ≥ n2/4. Thus, since 0≤ i≤ εn2, µ≥ n2(1− ε)/4. By taking λ= n−1/3, we

get that

|Li ∩S1×S2| ≥ (1+λ)|S1||S2|
(
1− i

n2

)
with probability at most exp

(
−n4/3(1−ε)

12

)
which is exp

(
−Ω(n4/3)

)
because ε < 1 is a constant.

Now, after union bounding over at most 4n subsets, we get that Qt does not occur with probability

at most 4n exp(−Ω(n4/3)) = o(1/n4). The proof is thus complete. □

Upon conditioning on the historyHt for 0≤ t≤ εn2, if Qt occurs and W (t)≤ (1+o(1))w(t/n2)n2,

then we can upper bound E[∆W (t) | Ht].

Lemma 10. For each 0≤ t≤ εn2, if Qt occurs and W (t)≤ (1+ o(1))w(t/n2)n2, then

E[∆W (t) | Ht]≤ (1+n−1/3)

(
1−W (t)

n2

)2

. (13)
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Proof of Lemma 10. Suppose 0≤ t≤ εn2 is such that Qt occurs and W (t)≤ (1+o(1))w(t/n2)n2.

Observe that since W (t) = n|Mt|, it suffices to show that

E[|Mt+1| − |Mt| | Ht]≤
1

n
(1+n−1/3)

(
1− |Mt|

n

)2

.

For j = 1,2, let Uj,t denote the vertices of Uj which are not selected by the RCRS after edges

Et = {F1, . . . ,Ft} arrive, where Uj,0 := Uj. Since the graph is bipartite, we have |Uj,t|= n− |Mt|.

Observe that a necessary condition for the RCRS to match Ft+1 is that it must be an edge of

U1,t×U2,t. On the other hand, conditional on Ht, Ft+1 is distributed u.a.r. amongst Lt :=E \Et.

Thus,

P[Ft+1 ∈U1,t×U2,t | Ht] =
|(U1,t×U2,t)∩Lt|

|E \Lt|
=
|(U1,t×U2,t)∩Lt|

n2− t
, (14)

where the equality follows since |E \Lt|= n2− t. In order to simplify (14), we make use the upper

bound on W (t), and the occurrence of the event Qt. First, W (t)≤ (1+ o(1))w(t/n2)n2, where we

note that w(t/n2) ≤ w(ε) = ε
1+ε

< 1/2, and hence for a sufficiently large n we have W (t) ≤ n2/2

and hence |Mt| ≤ n/2. Thus, |Uj,t|= (n− |Mt|)≥ n/2, and so we can apply (12) to subsets U1,t

and U2,t to ensure that

|(U1,t×U2,t)∩Lt| ≤ (1+n−1/3)(n− |Mt|)2
(
1− t

n2

)
.

Combined with (14), this implies that

P[Ft+1 ∈U1,t×U2,t | Ht]≤
(1+n−1/3)(n− |Mt|)2

n2
= (1+n−1/3)

(
1− |Mt|

n

)2

. (15)

Now, a second necessary condition for the RCRS to match Ft+1 is that Ft+1 must be active (i.e.,

XFt+1
= 1). This event occurs with probability 1/n, independently of the event Ft+1 ∈ U1,t ×U2,t

and the history Ht. By combining both necessary conditions, and (15),

E[|Mt+1| − |Mt| | Ht]≤
1

n
(1+n−1/3)

(
1− |Mt|

n

)2

,

and so the proof is complete. □
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Lemmas 9 and 10 imply that W (t)/n2 satisfies the differential inequality, r′ ≤ (1 − r)2 with

r(0) = 0. Intuitively, since w(t) satisfies the corresponding differential equation, w′ = (1−w)2 with

w(0) = 0, this suggests that W (t)/n2 ought to be dominated by w(t/n2). This is precisely the

statement of Proposition 14, and assuming the above lemmas, follows from the general purpose

“one-sided” differential equation method of Bennett and MacRury (2023). We provide the details

in §C.11.

4. Conclusion and Discussion

While our paper improved on the state of the art for RCRS and OCRS, determining the tight

selectability bounds for these problems remains open.

For OCRS, recall that the OCRS of Ezra et al. (2022) (Algorithm 1) is c≈ 0.382-selectable on

trees, where c ∈ (0,1) is the smaller root of c= (1− c)2. This is easily proven, since for any edge

e= (u, v) of G= (V,E), u and v are matched independently prior to the arrival of e. In contrast,

our 0.361 upper bound shows 0.382 is not attainable by this OCRS on general graphs. Deriving

an OCRS that can surpass our upper bound of 0.361 for Algorithm 1 on general graphs (if it is

even possible) would be intriguing. The input we used to prove the upper bound of 0.361 (i.e.,

Example 1) shows that the limitation of Algorithm 1 is due to the fact that it is non-adaptive:

it samples a bit Ae independently for each edge e ∈ E, and then greedily accepts arriving edges

with AeXe = 1. This suggests that in order to beat 0.361, one should design an OCRS whose bits

(Ae)e∈E are correlated in an intelligent way.

For RCRS, our 1/2 upper bound provides a fundamental separation from offline contention

resolution, where a 0.509 lower bound is known for bipartite graphs (Nuti and Vondrák 2023).

Our new 0.4789 lower bound surpasses the tight 0.4762 bound for monotone contention resolution

schemes on bipartite graphs, and thus shows that with respect to designing a CRS, monotonicity

is more constraining than random order. On a technical level, our positive results first reduce to

1-regular inputs and thus avoid more complicated forms of attenuation, as required by Pollner et al.

(2022). The main question left open here is whether 1/2 is the tight selectability bound for RCRS.
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Unlike our results for OCRS, we do not have an improved upper bound specific to our RCRS, and

so it is unclear whether the gap between our upper and lower bounds is due to our analysis, or our

choice of algorithm. Resolving this question is a natural first step towards proving (or disproving)

a tight selectability bound of 1/2.
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Appendix A: Applications of Contention Resolution

Example application: prophet matching. In the prophet inequality (resp. prophet secretary)

matching problem (Gravin and Wang 2019, Ezra et al. 2022), an online algorithm is given a graph

G= (V,E) with each edge e having weight We drawn independently from a known distribution; for

simplicity, assume each distribution is continuous. Initially, the instantiations of the edge weights

are unknown to the algorithm and are instead revealed to it in adversarial order (resp. random-

order). Upon learning the weight of an edge, the algorithm must make an irrevocable decision on

whether to include it in its current matching. Its goal is to maximize the expected weight of the

matching it outputs, and it is bench-marked against OPT(G), the expected weight of an optimal

matching of G (optimized knowing all the weight realizations in advance). An algorithm is said

to be c-competitive on G, provided the expected weight of the matching it returns is at least

c ·OPT(G).

One way to handle the complexity of the prophet matching problem is to first consider a re-

laxation of OPT: if xe is the probability that the optimal matching contains e, then (xe)e∈E is

a fractional matching. Moreover, if q(xe) := E[We |We in its top xe-fraction of realizations], then

OPT(G) ≤
∑

e∈E xeq(xe), and (xe)e∈E can be computed by the online algorithm in advance (see

Feldman et al. (2021) for details). Feldman et al. (2021) observed the following reduction to de-

signing a c-selectable OCRS (RCRS). Upon learning the weight We of an edge e, check if We is

in its top xe-fraction of realizations. If the answer is yes, then refer to e as active, and use the

OCRS (RCRS) to determine whether to add e to the current matching. Since the OCRS (RCRS)

is guaranteed to select each active edge with probability c, the expected weight of the matching

returned is at least c ·
∑

e∈E xeq(xe)≥ c ·OPT(G), and so the algorithm is c-competitive.

General application to online algorithms. Beyond the preceding example, our OCRS’s and

RCRS’s also imply state-of-the-art results for other online problems on graphs, including stochastic

probing (Bansal et al. 2012, Adamczyk et al. 2015, Baveja et al. 2018, Brubach et al. 2021) and

a recent application of sequentially pricing jobs for gig workers (Pollner et al. 2022). In these

problems, the algorithm makes a probing/pricing decision, after which there is stochasticity in

whether an edge e actually gets matched. Nonetheless, by querying a CRS, and when the CRS

says “select” calibrating the probing/pricing decision so that the probability of getting matched is

exactly xe, one also recovers online algorithms for these problems whose total reward is at least c

fraction of an optimal algorithm. This provides the analogous desideratum of c-competitiveness.

All in all, given arbitrary resource constraints, OCRS’s and RCRS’s can be viewed as a parsimo-

nious abstraction that allows different online decisions—accept/reject, probing, pricing, etc.—to
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be viewed under the same lens. Philosophically, they also make it easier to identify worst cases for

online algorithms, by imposing the stronger condition that it must extract c fraction of an optimal

algorithm’s reward from every element e (instead of only in total). It has been shown in some

cases (Lee and Singla 2018) that this stronger condition does not worsen the competitiveness c

attainable.

Appendix B: Deferred Proofs from Section 2

B.1. Proof of Proposition 1

The proof follows easily from (3): the induction hypothesis implies that

1− cxu′(e)− cxv′(e)≤ P[blocked(e)]≤ 1−max{cxu′(e), cxv′(e)},

where we note that P[matchedu′(e) ∪ matchedv′(e)] ≥ max{P[matchedu′(e)],P[matchedv′(e)]}. Re-

calling that P[Se = 1] = xeαe with αe defined to equal c/P[blocked(e)], this completes the proof.

B.2. Proof of Proposition 2

Let (u′,w1), . . . , (u
′,wm) be the edges incident to u′ arriving before (u′, v′), in that order. Note that

xu′(e) =
∑m

i=1 xu′,wi
. We can use independence to derive

P[aloneu′(e)] =
m∏
i=1

(1−P[Su′,wi
])

≥
m∏
i=1

(
1−

cxu′,wi

1− cxu′(u′,wi)− cxwi
(u′,wi)

)

≥
m∏
i=1

(
1−

cxu′,wi

1− c
∑

j<i xu′,wj
− c

)

=
m∏
i=1

1− c− c
∑

j≤i xu′,wj

1− c− c
∑

j<i xu′,wj

=
1− c− cxu′(e)

1− c

where the first inequality uses the upper bound in Proposition 1, and the second inequality uses the

definition that xu′(u′,wi) =
∑

j<i xu′,wj
and the fact that xwi

(u′,wi)≤ 1. This leads to the desired

result.

B.3. Proof of Theorem 1

We prove parts (i) and (ii) of Theorem 1 in order.

Recall from (2) and (3) that it suffices to show that P[matchedu(u, v)∪matchedv(u, v)]≤ 1−c for

the newly arriving edge (u, v). Note that if
∑

f∈∂(u) xf < 1, then P[matchedu(u, v)∪matchedv(u, v)]

can only be increased after adding a dummy edge between u and a new vertex that is active with

probability 1−
∑

f∈∂(u) xf , which arrives right before (u, v). The same argument can be made if
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f∈∂(v) xf < 1. Therefore, we can without loss of generality assume that

∑
f∈∂(u) xf =

∑
f∈∂(v) xf =

1, which represents the hardest case for P[matchedu(u, v)∪matchedv(u, v)]≤ 1− c to be satisfied.

Rewriting P[matchedu(u, v)∪matchedv(u, v)] following (3), it suffices for c-selectability to show that

0≤ 1− 3c+P[matchedu(u, v)∩matchedv(u, v)].

Therefore, we must show P[matchedu(u, v)∩matchedv(u, v)]≥ infkAdvMink(
c

1−c
), where we have

assumed that
∑

f∈∂(u) xf =
∑

f∈∂(v) xf = 1. Recall thatmatchedu(u, v)∩matchedv(u, v) occurs when-

ever all four events candidateuui
, candidatevvj , aloneui

(u,ui), and alonevj (v, vj) occur, for any choice

of indices i ∈ {1, . . . , k}, j ∈ {1, . . . , ℓ} such that the vertices ui, vj do not coincide. This is because

candidateuui
implies Ru,ui

= 1, which implies edge (u,ui) survives (see (5)), and this in conjunc-

tion with aloneui
(u,ui) ensures that matchedu(u, v) occurs. An analogous argument ensures that

matchedv(u, v) occurs, assuming ui is not the same vertex as vj. Finally, we note that since u

and v each choose at most one candidate, the events candidateuui
∩ candidatevvj ∩ aloneui

(u,ui) ∩

alonevj (v, vj) are disjoint across the different combinations of i, j. Therefore, we can derive

P[matchedu(u, v)∩matchedv(u, v)]

≥
∑

i,j:ui ̸=vj

P[candidateuui
∩ candidatevvj ∩ aloneui

(u,ui)∩ alonevj (v, vj)]. (EC.1)

The next step consists in showing that for any combination of i, j such that ui ̸= vj, the proba-

bility term on the r.h.s. is lower-bounded by the independent case, i.e.

P[candidateuui
∩ candidatevvj ∩ aloneui

(u,ui)∩ alonevj (v, vj)]

≥ P[candidateuui
]P[candidatevvj ]P[aloneui

(u,ui)]P[alonevj (v, vj)]. (EC.2)

We argue this using the FKG inequality. Consider the bits {Se : e ∈ E} about the survival of

the edges. Note that all four events candidateuui
, candidatevvj ,aloneui

(u,ui),alonevj (v, vj) are fully

determined by these bits, and moreover are increasing in the bits Su,ui
, Sv,vj (they must nec-

essarily be 1 for candidateuui
, candidatevvj to be 1, and note that this does not adversely affect

aloneui
(u,ui),alonevj (v, vj) since ui ̸= vj), and decreasing in all bits Se when e is not (u,ui) or

(v, vj). Since the bits Se are independent across e, we have that (EC.2) holds, for any i, j such that

ui ̸= vj.
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Now, we can use (4) and Proposition 2 to lower-bound P[candidateuui
] and P[aloneui

(u,ui)] re-

spectively. Therefore, we derive

P[candidateuui
]P[aloneui

(u,ui)]≥
1− c− cxui

(u,ui)

1− c

cxu,ui

1− cxui
(u,ui)

∏
i′<i

(1−
cxu,ui′

1− cxui′
(u,ui′)

)

≥
1− c− c(1−xu,ui

)

1− c

cxu,ui

1− c(1−xu,ui
)

∏
i′<i

(1−
cxu,ui′

1− c(1−xu,ui′
)
)

=
1− 2c+ cxu,ui

1− c+ cxu,ui

cxu,ui

1− c

∏
i′<i

1− c

1− c+ cxu,ui′
(EC.3)

where the second inequality holds because the first expression is decreasing in both xui
(u,ui) and

xui′
(u,ui′), which must satisfy xui

(u,ui)≤ 1−xu,ui
and xui′

(u,ui′)≤ 1−xu,ui′
respectively.

Combining the derivations in (EC.1), (EC.2), and (EC.3) (and lower bounding the analogous

expression P[candidatevvj ]P[alonevj (v, vj)]), we see that P[matchedu(u, v)∩matchedv(u, v)] is at least

∑
i,j:ui ̸=vj

(
1− 2c+ cxu,ui

1− c+ cxu,ui

cxu,ui

1− c

∏
i′<i

1− c

1− c+ cxu,ui′

)1− 2c+ cxv,vj

1− c+ cxv,vj

cxv,vj

1− c

∏
j′<j

1− c

1− c+ cxv,vj′

 .

(EC.4)

Finally, to relate to infkAdvMink(
c

1−c
), let U(i) denote the first expression in large parentheses

in (EC.4), and let V (j) denote the second expression in large parentheses in (EC.4). We can assume

without loss that k= ℓ= |V |− 2, by adding edges with xu,ui
= 0 or xv,vj = 0 as necessary, in which

case U(i) = 0 or V (j) = 0 respectively. This allows us to rewrite (EC.4) as

k∑
i=1

U(i)
k∑

j=1

V (j)−
∑

i,j:ui=vj

U(i)V (j). (EC.5)

This is where we specify the ordering of the vertices u1, . . . , uk and v1, . . . , vk in a way that aids our

analysis. We specify u1 so that xu,u1
=maxi xu,ui

, and similarly specify v1 so that xv,v1 =maxj xv,vj .

We let v2 = u1, and similarly u2 = v1; if u1 = v1 then we instead let u2 = v2 be any other vertex

in V \ {u, v,u1}. We have completed the specification of u1, u2, v1, v2 in a way such that {u1, u2}=

{v1, v2}. Hence, both u3, . . . , uk and v3, . . . , vk must be orderings of the vertices in V \{u, v,u1, u2}.

We define these orderings in such a way so that xu,u3
≥ · · · ≥ xu,uk

and xv,v3 ≥ · · · ≥ xv,vk . This

implies U(3)≥ · · · ≥U(k) and V (3)≥ · · · ≥ V (k).
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We have completed the specification of the orderings u1, . . . , uk and v1, . . . , vk. Now, consider

an adversary trying to design the values of xu,u1
, . . . , xu,uk

, xv,v1 , . . . , xv,vk to minimize expres-

sion (EC.5), subject to all aforementioned constraints. By the rearrangement inequality, the sum

being subtracted is maximized if the largest values of U(i) are paired with the largest values of

V (j). That is, the adversary wants ui = vi for all i= 3, . . . , k. Moreover, this assignment of vertices

is guaranteed to feasibly satisfy xu,ui
+xv,vi ≤ 1, since both xu,ui

and xv,vi must be at most 1/2 (re-

call that xu,ui
≤ xu,u1

and xu,ui
+xu,u1

≤ 1). Therefore, if we assume that ui = vi for all i= 3, . . . , k,

then this only provides a lower bound on expression (EC.5).

To finish, let b := c
1−c

. We define shorthand notation yi := xu,ui
and zi := xv,vi for all i= 3, . . . , k,

as well as y1, y2, z1, z2 such that y1 and z1 correspond to the same vertex (and y2 and z2 correspond

to the same vertex). We drop the constraint that at least one of y1, y2 must correspond to a maximal

value of xu,ui
(and similarly for z1, z2). Noting that U(i) can be rewritten as 1−b+byi

1+byi
byi
∏

i′<i
1

1+byi′

under the new notation (and similarly for V (j)), we can express the adversary’s optimization

problem as minimizing

(
k∑

i=1

1− b+ byi
1+ byi

byi
∏
i′<i

1

1+ byi′

)(
k∑

i=1

1− b+ bzi
1+ bzi

bzi
∏
i′<i

1

1+ bzi′

)

−
k∑

i=1

1− b+ byi
1+ byi

byi
1− b+ bzi
1+ bzi

bzi
∏
i′<i

1

1+ byi′

1

1+ bzi′

subject to constraints
∑k

i=1 yi =
∑k

i=1 xu,ui
= 1 =

∑k

i=1 zi =
∑k

i=1 xv,vi (recall the assumption that∑
f∈∂(u) xf =

∑
f∈∂(v) xf = 1), constraint yi + zi ≤ 1 for all i= 1, . . . , k, and constraints y3 ≥ · · · ≥

yk, z3 ≥ · · · ≥ zk (due to the ordering chosen by the algorithm) as well as non-negativity constraints.

This is a lower bound on the original expression in (EC.4), and is exactly the AdvMink(b) op-

timization problem. Therefore, P[matchedu(u, v)∩matchedv(u, v)]≥AdvMink(b) where k denotes

the number of vertices in V \ {u, v}. To ensure 1− 3c+ P[matchedu(u, v)∩matchedv(u, v)]≥ 0, it

suffices to ensure 1− 3c+ infkAdvMink(b), completing the proof of Theorem 1, part (i).
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Fix a large positive integer “cutoff” K and consider any k ≥K. Since any term subtracted in

the latter sum in the objective of AdvMink(b) also appears when the first two large parentheses

are expanded, the objective can only be reduced if we reduce the term

yi− byi + by2
i

1+ byi

∏
i′<i

1

1+ byi′
(EC.6)

for any index i. To reduce this term, note that
yi−byi+by2i

1+byi
= 1−b+byi

1+byi
yi ≥ (1 − b)yi and 1

1+byi′
≥

1− byi′ , which allows us to reduce (EC.6) to (1− b)yi
∏

i′<i(1− byi′). We can similarly lower bound

zi−bzi+bz2i
1+bzi

∏
i′<i

1
1+bzi′

by (1− b)zi
∏

i′<i(1− bzi′). Therefore, the objective of AdvMin(k) is lower-

bounded by the following:

b2

(
K∑

i=1

yi− byi + by2i
1+ byi

∏
i′<i

1

1+ byi′
+
∑
i>K

(1− b)yi
∏
i′<i

(1− byi′)

)
·(

K∑
i=1

zi− bzi + bz2i
1+ bzi

∏
i′<i

1

1+ bzi′
+
∑
i>K

(1− b)zi
∏
i′<i

(1− bzi′)

)

− b2
K∑

i=1

yi− byi + by2i
1+ byi

zi− bzi + bz2i
1+ bzi

∏
i′<i

1

1+ byi′

1

1+ bzi′
− b2

∑
i>K

(1− b)2yizi
∏
i′<i

(1− byi′)(1− bzi′)

≥ b2

(
K∑

i=1

yi− byi + by2i
1+ byi

∏
i′<i

1

1+ byi′
+

1− b

b

K∏
i′=1

(1− byi′)

k∑
i=K+1

byi

i−1∏
i′=K+1

(1− byi′)

)

·

(
K∑

i=1

zi− bzi + bz2i
1+ bzi

∏
i′<i

1

1+ bzi′
+

1− b

b

K∏
i′=1

(1− bzi′)

k∑
i=K+1

bzi

i−1∏
i′=K+1

(1− bzi′)

)

− b2
K∑

i=1

yi− byi + by2i
1+ byi

zi− bzi + bz2i
1+ bzi

∏
i′<i

1

1+ byi′

1

1+ bzi′
− b2

∑
i>K

(1− b)2
1

(i− 2)2

≥ b2

(
K∑

i=1

yi− byi + by2i
1+ byi

∏
i′<i

1

1+ byi′
+

1− b

b

K∏
i=1

(1− byi)

(
1−

k∏
i=K+1

(1− byi)

))

·

(
K∑

i=1

zi− bzi + bz2i
1+ bzi

∏
i′<i

1

1+ bzi′
+

1− b

b

K∏
i=1

(1− bzi)

(
1−

k∏
i=K+1

(1− bzi)

))

− b2
K∑

i=1

yi− byi + by2i
1+ byi

zi− bzi + bz2i
1+ bzi

∏
i′<i

1

1+ byi′

1

1+ bzi′
− b2(1− b)2

∫ ∞

K−2

1

x2
dx

≥

(
K∑

i=1

byi

(
1− b

1+ byi

)∏
i′<i

1

1+ byi′
+

1− b

b

K∏
i=1

(1− byi)

(
1− exp(−b(1−

K∑
i=1

yi))

))
(EC.7)

·

(
K∑

i=1

bzi

(
1− b

1+ bzi

)∏
i′<i

1

1+ bzi′
+

1− b

b

K∏
i=1

(1− bzi)

(
1− exp(−b(1−

K∑
i=1

zi))

))
(EC.8)

−
K∑

i=1

(
1− b

1+ byi

)(
1− b

1+ bzi

)∏
i′<i

1

1+ byi′

1

1+ bzi′
− b2(1− b)2

K − 2
. (EC.9)

We explain each inequality. The first inequality rewrites terms in the first two lines and applies the

bounds yi ≤ 1
i−2

and zi ≤ 1
i−2

on the final subtracted term, which hold because
∑k

i=1 yk = 1 and y3 ≥
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· · · ≥ yk ≥ 0 (and similarly for the zi’s). For the second inequality, note that
∑k

i=K+1 byi
∏i−1

i′=K+1(1−

byi′) is equivalent to the probability that at least one of independent Bernoulli random vari-

ables with means byi for i=K + 1, . . . , k realizes to 1 (similarly for the zi’s). Moreover, we have∑
i>K

1
(i−2)2

≤
∫∞
K−2

1
x2
dx by Riemann sums. For the final inequality, we have applied the fact

1− byi ≤ exp(−byi) and the constraint that
∑K

i=1 yi = 1 (similarly for the zi’s) and evaluated the

integral.

Since this holds for all k≥K, we have proven that for any positive integerK > 2, infkAdvMink(b)

is lower-bounded by the auxiliary optimization problem defined by

AdvMinAuxK(b) := inf (EC.7)–(EC.9)

s.t.
K∑
i=1

yi ≤ 1

K∑
i=1

zi ≤ 1

yi + zi ≤ 1 ∀i= 1, . . . ,K

yi, zi ≥ 0 ∀i= 1, . . . ,K

(note that we have relaxed the constraints y3 ≥ · · · ≥ yK and z3 ≥ · · · ≥ zK on the adversary).

That is, we have 1 − 3c + infkAdvMink(
c

1−c
) ≥ 1 − 3c + AdvMinAuxK(

c
1−c

). The proof of The-

orem 1, part (ii) is then completed by computationally verifying that for c = 0.3445 and K =

80 (a finite optimization problem), 1 − 3c + AdvMinAuxK(
c

1−c
) ≥ 0. (Code can be found at

https://github.com/Willmasaur/OCRS_matching/blob/main/ocrs.jl, which uses the JuMP

(Dunning et al. 2017) and COUENNE packages).

B.4. Recovering the Analysis of Ezra et al. (2022)

We show why the analysis of Ezra et al. (2022) that yields c= 0.337 is recovered if we set E[Ru,ui
] :=

cxu,ui
1−cxu(u,ui)

for all neighbors ui of u other than v (and analogously, set E[Rv,vj ] :=
cxv,vj

1−cxv(v,vj)
for all

neighbors vj of v other than u). Following the proof of Theorem 1, we derive

P[matchedu(u, v)∩matchedv(u, v)]≥
∑

i,j:ui ̸=vj

P[candidateuui
]P[candidatevvj ]P[aloneui

(u,ui)]P[alonevj (v, vj)]

https://github.com/Willmasaur/OCRS_matching/blob/main/ocrs.jl
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≥
∑

i,j:ui ̸=vj

P[candidateuui
]P[candidatevvj ]

1− c− cxui
(u,ui)

1− c

1− c− cxvj (v, vj)

1− c

where the latter inequality applies Proposition 2.

Now, the probabilities of candidateuui
and candidatevvj will change under the new way in which

we set the probabilities of the bits Ru,ui
and Rv,vj . Contrasting the proof of Theorem 1, in this

analysis we index i= 1, . . . , k so that the neighbors u1, . . . , uk of u arrive in that order (we similarly

index j = 1, . . . , ℓ). Then, we can substitute into (4) and get

P[candidateuui
] =

cxu,ui

1− cxu(u,ui)

∏
i′<i

(
1−

cxu,ui′

1− cxu(u,ui′)

)

=
cxu,ui

1− cxu(u,ui)

∏
i′<i

1− cxu(u,ui′)− cxu,ui′

1− cxu(u,ui′)

=
cxu,ui

1− cxu(u,ui)

∏
i′<i

1− cxu(u,ui′+1)

1− cxu(u,ui′)

= cxu,ui

where xu(u,ui′) + xu,ui′
= xu(u,ui′+1) by definition of the ordering, allowing for the telescoping

product. After similarly deriving that P[candidatevvj ] = cxv,vj , we get that

P[matchedu(u, v)∩matchedv(u, v)]≥
∑

i,j:ui ̸=vj

cxu,ui
cxv,vj

1− c− cxui
(u,ui)

1− c

1− c− cxvj (v, vj)

1− c

(EC.10)

≥
∑

i,j:ui ̸=vj

cxu,ui
cxv,vj

(
1− 2c

1− c

)2

.

The final bound corresponds exactly to the expression being analyzed in Ezra et al. (2022, Lem. 3),

which has a minimum value of c2( 1−2c
1−c

)2/2, resulting in a constraint of c≤ 1−2c+ c2( 1−2c
1−c

)2/2 and

leading to c≈ 0.337.

We remark that even if one tries to improve the analysis by lower-bounding the RHS of (EC.10)

using the tighter expression

∑
i,j:ui ̸=vj

cxu,ui
cxv,vj

1− c− c(1−xu,ui
)

1− c

1− c− c(1−xv,vj )

1− c
,
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the expression can be as small as c2( 1−2c
1−c

)2 when the values of xu,ui
, xv,vj become infinitesimally

small and satisfy
∑k

i=1 xu,ui
=
∑ℓ

j=1 xv,vj = 1. This would result in a constraint of c ≤ 1 − 2c +

c2( 1−2c
1−c

)2 and lead to c≈ 0.342, which is still worse than the selection guarantee achieved in our

Theorem 1.

B.5. Proof of Theorem 2

By the same argument as in the start of the proof of Theorem 1 part (i), we can without loss

of generality assume that
∑

f∈∂(u) xf =
∑

f∈∂(v) xf = 1, after which it suffices to show that 1 −

3c+P[matchedu(u, v)∩matchedv(u, v)]≥ 0. We will show that P[matchedu(u, v)∩matchedv(u, v)]≥(
1− exp(− c(1−2c)

(1−c)2
)
)2

. To do so, recall that matchedu(u, v)∩matchedv(u, v) occurs whenever u and

v both have a neighbor that survives (i.e. can be a candidate) and is alone. Letting u1, . . . , uk be

the vertices in V \ {u, v} such that {(u,ui) : i= 1, . . . , k}= ∂(u) are the edges in E incident to u,

and respectively v1, . . . , vℓ be the vertices (which are distinct from u1, . . . , uk) such that {(v, vj) :

j = 1, . . . , ℓ}= ∂(v), we have that

P[matchedu(u, v)∩matchedv(u, v)]

≥ P

[(⋃
i

(Su,ui
∩ aloneui

(u,ui))

)⋂(⋃
j

(Sv,vj ∩ alonevj (v, vj))

)]
.

We argue that the r.h.s. of the preceding inequality is lower-bounded by the independent case, i.e.

P[matchedu(u, v)∩matchedv(u, v)]≥ P

[⋃
i

(Su,ui
∩ aloneui

(u,ui))

]
P

[⋃
j

(Sv,vj ∩ alonevj (v, vj))

]
,

(EC.11)

again using the FKG inequality. To see this, consider the bits {Se : e∈E}, and note that the events

Su,ui
∩ aloneui

(u,ui) and Sv,vj ∩ alonevj (v, vj) are fully determined by these bits, and moreover are

increasing in the bits {Se : e∈ ∂(u)∪∂(v)} (such bits affect only Su,ui
and Sv,vj ) and decreasing in

the bits {Se : e /∈ ∂(u)∪∂(v)} (such bits affect only aloneui
(u,ui) and alonevj (v, vj)). Since the bits

Se are independent across e, we have that (EC.11) holds.
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Now, we can derive that

P

[⋃
i

(Su,ui
∩ aloneui

(u,ui))

]
= 1−

∏
i

(1−P[Su,ui
]P[aloneui

(u,ui)])

≥ 1−
∏
i

(
1−

cxu,ui

1− cxui
(u,ui)

1− c− cxui
(u,ui)

1− c

)
≥ 1−

∏
i

(1− c(1− 2c)

(1− c)2
xu,ui

)

≥ 1− exp

(
−c(1− 2c)

(1− c)2

∑
i

xu,ui

)
.

To explain the equality, note that event aloneui
(u,ui) depends only on the independent bits

{Se : e ∈ ∂(ui) \ (u,ui)}, which must be disjoint from {Se : e ∈ ∂(ui′) \ (u,ui′)} for any i′ ̸= i,

since otherwise ui and ui′ would form a 3-cycle with u. Therefore, the 2k events Su,u1
, · · · , Su,uk

,

aloneu1
(u,u1), . . . ,aloneuk

(u,uk) are mutually independent, allowing us to decompose the proba-

bility P [
⋃

i(Su,ui
∩ aloneui

(u,ui))] into the product in the first line. After that, the first inequality

holds by Propositions 1 and 2, the second inequality holds because xui
(u,ui)≤ 1 and c≤ 1/2, and

the final inequality holds elementarily. Finally, applying the assumption that
∑k

i=1 xu,ui
= 1, we

conclude that P [
⋃

i(Su,ui
∩ aloneui

(u,ui))]≥ 1− exp(− c(1−2c)

(1−c)2
).

After an analogous lower bound for P
[⋃

j(Sv,vj ∩ alonevj (v, vj))
]
and substituting into (EC.11),

we have shown that P[matchedu(u, v) ∩matchedv(u, v)] ≥ (1− exp(− c(1−2c)

(1−c)2
))2. It can be numeri-

cally verified that c = 0.349 satisfies 1− 3c+ (1− exp(− c(1−2c)

(1−c)2
))2 ≥ 0, completing the proof that

Algorithm 1 is 0.349-selectable.

B.6. Negative Correlation between matchedu(e) and matchedv(e) on Bipartite Graphs

Consider a bipartite graph between vertices u1, u2, u3 and v1, v2, v3. Let the edges be e1 = (u3, v2),

e2 = (u2, v3), e3 = (u2, v2), e4 = (u2, v1), e5 = (u1, v2), and e6 = (u1, v1), arriving in that order, with

xe1 = · · ·= xe6 = 1/3 (the constant 1/3 is not important for our argument). Let the edge in question

be e= e6, with u= u1 and v = v1. Our claim is that under the execution of Algorithm 1, we have

Pr[matchedu(e)matchedv(e)] < Pr[matchedu(e)]Pr[matchedv(e)], i.e. the events of u and v being

matched upon the arrival of the final edge are negatively correlated.
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Note that when the final edge arrives, the algorithm would have conducted greedy matching (se-

lecting every feasible edge) on the subsequence of (e1, . . . , e5) of edges that survive. Conditional on

e3 not surviving, u is disconnected from v and hence matchedu(e) and matchedv(e) are independent

events, i.e.

Pr[matchedu(e)matchedv(e)|S3 = 0] =Pr[matchedu(e)|S3 = 0]Pr[matchedv(e)|S3 = 0]. (EC.12)

Meanwhile, conditional on S3 = 1, vertices u and v cannot both be matched, because if both

vertices u2 and v2 are not blocked when edge 3 arrives, then e3 would be selected, blocking u2 and v2

and preventing vertices u and v from being matched. Yet, it is clear that both Pr[matchedu(e)|S3 =

1] and Pr[matchedv(e)|S3 = 1] are positive, noting that all edges in this example have a positive

probability of surviving. Therefore, we get that

Pr[matchedu(e)matchedv(e)|S3 = 1] = 0<Pr[matchedu(e)|S3 = 1]Pr[matchedv(e)|S3 = 1]. (EC.13)

Combining (EC.12) and (EC.13) establishes that Pr[matchedu(e)matchedv(e)] <

Pr[matchedu(e)]Pr[matchedv(e)], as desired.

B.7. Proof of Proposition 3

Since edge (3,4) comes after (1,2), the probability of it being selected conditional on (1,2) being

selected is at most x34 =
1−ε
2
. That is, P[(1,2)∈M∩ (3,4)∈M]≤ 1−ε

2
P[(1,2)∈M]. Thus,

P[(1,2)∈M∪ (3,4)∈M]≥ P[(1,2)∈M] +P[(3,4)∈M]− 1− ε

2
P[(1,2)∈M]

=
1+ ε

2
P[(1,2)∈M] +P[(3,4)∈M].

≥
(
1+ ε

2
+1

)
c
1− ε

2

where the final inequality must hold if we were to have a c-selectable OCRS. We can simi-

larly derive that P[(2,3) ∈ M ∪ (4,1) ∈ M] ≥ 3+ε
2
c 1−ε

2
. Now, note that (1,2) ∈ M ∪ (3,4) ∈ M

and (2,3) ∈ M ∪ (4,1) ∈ M are disjoint events. Hence, the probability that any of the edges

(1,2),(2,3),(3,4),(4,1) is selected is at least (3+ε)(1−ε)

2
c. If any such edges are selected, then the di-

agonal edges (1,3),(2,4) cannot be selected. Therefore, the probability that (1,3) can be selected

is at most (1 − (3+ε)(1−ε)

2
c)ε, which must be at least cε in order to have a c-selectable OCRS.

Consequently we have 1− (3+ε)(1−ε)

2
c≥ c, and taking ε→ 0 implies c≤ 0.4.
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B.8. Proof of Proposition 4

First, note that when the first two edges (1,2) and (3,4) arrive, they cannot be blocked. Therefore,

P[blocked(1,2)] = P[blocked(3,4)] = 1. Therefore, α(1,2) = α(3,4) = c, and matched with probability

c(1− ϵ)/2 (and independently of each other).

Next, each of the next two edges (i.e., (2,3) and (4,1)) are blocked if either of the first two edges

was matched. We have:

P[blocked(2,3)] = P[blocked(4,1)] = P[(1,2) /∈M∩ (3,4) /∈M]

= (1− c(1− ϵ)/2)2

which further gives that α(2,3) = α(4,1) = c(1− c(1− ϵ)/2)−2.

Finally, consider the final two arrivals, the diagonal edges. Edge (1,3) is not blocked as long as

none of the previous arrivals was matched. That is, both of edges (1,2) and (3,4) must have been

left unmatched (each with probability 1−c(1−ϵ)/2), and then each of the next two edges (i.e., (2,3)

and (4,1)) must have failed to survive (which occurs with probability 1−c(1−ϵ)(1−c(1−ϵ)/2)2/2).

The same holds for edge (2,4). This gives us:

P[blocked(1,3)] = P[blocked(2,4)] =
(
1− c

1− ϵ

2

)2(
1− c(1− ϵ)

2(1− c(1− ϵ)/2)2

)2

As per (2), we want this probability to be at least c. As ϵ→ 0, we get

(
1− c

2

)2
(
1− c

2(1− c/2)2

)2

≥ c

which is satisfied only if c≤ 0.3602. Thus, on this graph, we must have c < 0.361, and the OCRS

cannot be better than 0.361-selectable.

B.9. Proof of Proposition 5

Let G be a graph on vertices V = {1,2,3,4} that is a path of three edges (1,2),(2,3),(3,4), and

consider the fractional matching whose edge values are x12 = 1−ε,x23 = ε,x34 = 1−ε, with ε being

a small positive constant. The arrival order of edges is (1,2),(3,4),(2,3), where the middle edge

arrives last.
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Notice that the first two edges, (1,2) and (3,4) cannot be blocked and so P[blocked(1,2)] =

P[blocked(3,4)] = 1. This means α(1,2) = α(3,4) = c. Each of these edges will therefore be matched

with probability c(1− ϵ). When the middle edge arrives, then, the probability it is not blocked is

(1− c(1− ϵ))2. Applying (2), we get

(1− c(1− ϵ))2 ≥ c

and for ϵ→ 0 this gives c ≤ 0.3819. This means that the OCRS cannot be better than 0.382-

selectable for this graph.

Appendix C: Deferred Proofs from Section 3

C.1. Proof of Lemma 1

Below we state a detailed version of Lemma 1. Note that this reduction also works for OCRS,

however we do not use this anywhere in the paper.

Lemma EC.1 (Reduction to 1-Regular Inputs – Long Version). Given G = (V,E) with

fractional matching x = (xe)e∈E, there exists G′ = (V ′,E′) and x′ = (x′
e)e∈E′ with the following

properties:

1. (G′,x′) can be computed in time polynomial in the size of (G,x)

2. (G′,x′) is 1-regular.

3. If G has no cycles of length 3 or 5, then neither does G′.

4. If there is an α-selectable RCRS (respectively, OCRS) for G′ and x′, then there exists an

α-selectable RCRS (respectively, OCRS) for G and x.

Proof of Lemma EC.1. The graph G′ = (V ′,E′) and fractional matching is constructed as

follows. For v0 ∈ V , we add 6 additional vertices, say v1, . . . , v6, and create a cycle of length 7 of

the form v0, v1, . . . , v6, v0. If xv0 :=
∑

e∈∂G(v0)
xe, we define x′

vi,vi+1
= (1−xv0)/2 if i∈ {0,1, . . . ,6} is

even, and x′
vi,vi+1

= (1+xv0)/2 if i is odd. We repeat this construction for each v0 ∈ V , creating an

additional 6 vertices each time. Finally, we set x′
e := xe for each e ∈E. Observe that (G′,x′) can

be computed efficiently, and it is clearly 1-regular. Moreover, each cycle we created has length 7,

and so if G has no cycles of length 3 or 5, then neither will G′.
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Finally, suppose we are given an α-selectable RCRS for (G′,x′). We now show how to produce

an α-selectable RCRS for (G,x). For each edge e ∈ E′ \E, generate a uniformly random arrival

time Y ′
e ∈ [0,1]. Then, we run the RCRS for G′, allowing the edges of E′ \E to arrive in the order

of Y ′
e (letting Y ′

e for an edge e∈E be equal to its original arrival time in G).

Clearly, the arrivals of E′ are uniformly random, so the RCRS for G′ selects each edge e ∈ E′

with probability at least αxe (since the RCRS is α-selectable). Since the RCRS further processes

the edges of E in their original (random) order, this is also an RCRS for G, and it is clearly

α-selectable.

The reduction for OCRS proceeds similarly, and so the proof is complete. □

C.2. Proof of Lemma 2

Let us assume that f = (u,w), and h∈ ∂(w)\{f, f c}. We then condition on Ye = y, Sf = 1, Yf = yf ,

and Yh = yh, where yf , yh ∈ [0, y] satisfy yh < yf . Our goal is to first derive a lower bound on

P[sblf (h) | Yh = yh, Yf = yf ]. Observe that since yh < yf , h is a simple-blocker for f if and only if

each h′ ∈ ∂(h) \ ∂(e) is irrelevant for h. Thus,

P[sblf (h) | Yh = yh, Yf = yf , Ye = y] = xha(xh)
∏

h′∈∂(h)\∂(e)

ℓ(xh′ , yh) (EC.1)

where we recall that ℓ(xh′ , yh) := 1−yhs(xh′). Now, (EC.1) is when minimized when ∂(h)\∂(e) has

as many edges as possible, so we hereby assume without loss of generality that ∂(h)∩∂(e) = {f, f c}.

In order to minimize (EC.1), we analyze

∑
h′∈∂(h)\{f,fc}

log ℓ(xh′ , yh), (EC.2)

subject to
∑

h′∈∂(h)\{f,fc} xh′ = 2− 2xh−xf −xfc . The convexity of xh′→ log ℓ(xh′ , yh) guaranteed

by Proposition 8 allows us to conclude that (EC.2) is minimized when maxh′∈∂(h)\{f,fc} xh′ = o(1)

and |∂(h) \ {f, f c}|→∞. Thus,

P[sblf (h) | Yh = yh, Yf = yf , Ye = y]≥ xha(xh) exp (−(2(1−xh)−xf −xfc)yh) . (EC.3)
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(We omit the full details, as this part of the argument is due to Brubach et al. (2021)). Using

(EC.3), we integrate over yh ∈ [0, yf ], followed by yf ∈ [0, y], to get that

P[Yf < y and sblf (h) | Ye = y]≥ xha(xh)

∫ y

0

∫ yf

0

exp (−(2(1−xh)−xf −xfc)yh) dyh dyf

=
xha(xh)

2(1−xh)−xf −xfc

∫ y

0

(1− exp(−(2(1−xh)−xf −xfc)yf )dyf

=
xha(xh)

(2(1−xh)−xf −xfc)

(
y− 1− exp(−(2(1−xh)−xf −xfc)y

2(1−xh)−xf −xfc

)
.

Finally, after dividing both sides by P[Yf ≤ y] = y, and observing that Sf is independent of sblf (h),

we get the claimed inequality, and so the proof is complete.

C.3. Proof of Proposition 8

First observe that a1(0) = 1, and a1 is continuous and decreasing on [0,1]. Consider the second

derivative d2

dx2
ln ℓ(x, y); minimizing this over all x∈ [0,1], y ∈ [0,1] gives a minimum of 0 at x= y= 0.

Thus, if we fix any y ∈ [0,1], the function x 7→ d2

dx2
ℓ(x, y) is nonnegative for x∈ [0,1], implying that

for this fixed value of y, x 7→ ln ℓ(x, y) is convex on the interval [0,1].

C.4. Proof of Lemma 3

Let us assume that f = (w,u) for some w ∈ N(u) \ {v}. We shall assume that 1− xf − xfc < 1,

as otherwise the statement follows immediately. In this case,
∑

h∈∂(w)\{f,fc} xh > 0 since w has

fractional degree 1 (as G is 1-regular). Observe that by definition, sblf = ∪h∈∂(w)\{f,fc}sblf (h). On

the other hand, f has at most one simple-blocker by Proposition 6. Thus, after applying Lemma

2, if zh := 2(1−xh)−xf −xfc , then

P[sblf | f ∈Re, Ye = y]≥
∑

h∈∂(w)\{f,fc}

xha(xh)

zh

(
1− 1− e−zhy

zhy

)
, (EC.4)

subject to the constraint,
∑

h∈∂(w)\{f,fc} xh = 1− xf − xfc . Fix y,xf and xfc . We claim that the

worst-case for (EC.4) occurs when |∂(w)\{f, f c}|= 1, and the single edge h within this set satisfies

xh = 1−xf −xfc . In this case, the r.h.s of (EC.4) is T (xf +xfc , y) so this will complete the proof.

Define A(xh) :=
a(xh)

zh

(
1− 1−e−zhy

zhy

)
. Observe that if we can show that A(xh) is decreasing as a

function of xh on the interval [0,1− xf − xfc ], then this will imply the claimed worst-case. Now,
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setting B(xh) := logA(xh), we have that B(xh) = loga(xh)− 2 log zh− log y+ log(zhy+ e−yzh − 1),

and so after differentiating B with respect to xh,

B′(xh) =
a′(xh)

a(xh)
+

4

zh
− 2y(1− exp(−yzh)

zhy+exp(−yzh− 1)
. (EC.5)

Our goal is to show that B′(xh) ≤ 0 for all xh ∈ [0,1]. First, since zh ∈ [0,2], the function y →

2y(1−exp(−yzh))

zhy+exp(−yzh−1)
is decreasing, and so (EC.5) is minimized at y= 1, when it is equal to a′(xh)

a(xh)
+ 4

zh
−

2(1−exp(−zh))

zh+exp(−zh−1)
. Similarly, the function zh→ 4

zh
− 2(1−exp(−zh))

zh+exp(−zh−1)
is decreasing in zh, and thus increasing

in xh (as zh = 2−2xh−xf −xfc). Its maximum therefore occurs at xh = 1−xf −xfc , and so (EC.5)

is upper-bounded by

a′(xh)

a(xh)
+

4

1−xh

− 2(1− exp(xh− 1))

exp(xh− 1)−xh

,

which is at most 0 by Proposition 8. Thus, B′(xh)≤ 0 for all xh ∈ [0,1], and so B(xh) is decreasing

as a function of xh. By exponentiating, the same statement is true for A(xh), and so the proof is

complete.

C.5. Proof of Proposition 9

Recall that a1(x) = (1− (3− e)x)2. The function

x 7→ a′
1(x)

a1(x)
+

4

1−x
− 2(1− exp(x− 1))

exp(x− 1)−x

is decreasing on the interval [0,1], as can be seen by examining its first derivative. Thus, it is

maximized at x= 0, where it takes on value 0.

C.6. Proof of Lemma 4

Recall that w ∈NG(u)∪NG(v)\{u, v} is the vertex which is copied k≥ 1 times in the construction

Gk, yielding w1, . . . ,wk instead of w. For convenience, we define ∂̃(e) := ∂G(e) \ {(w,u), (w,v)}. In

order to relate objGk
(e, y) to objG(e, y), it will be convenient to use

T (x1 +x2, y) =
s(1−x1−x2)

x1 +x2

(
1− 1− e−(x1+x2)y

(x1 +x2)y

)
,
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and Q(x1, x2, y) = T (x1 + x2, y)(ys(x1)ℓ(x2, y) + ys(x2)ℓ(x1, y)). Observe then that objGk
(e, y) is

equal to

∑
f∈∂̃(e)

T (xf +xfc , y) · ys(xf )(ℓ(xw,u/k, y)ℓ(xw,v/k, y))
k

∏
g∈∂̃(e)\{f}

ℓ(xg, y)

+kQ(xu,w/k,xv,w/k, y) · (ℓ(xw,u/k, y)ℓ(xw,v/k, y))
k−1

∏
g∈∂̃(e)

ℓ(xg, y)

+(ℓ(xw,u/k, y)ℓ(xw,v/k, y))
k
∏

g∈∂̃(e)

ℓ(xg, y).

(Here the middle term groups the contributions of the edges (u,wi) and (v,wi) for each 1≤ i≤ k).

Instead of working directly with objGk
(e, y), we consider its point-wise limit as k→∞. First, using

the continuity of a, and the fact that a(0) = 1,

lim
k→∞

(ℓ(xw,u/k, y)ℓ(xw,v/k, y))
k = lim

k→∞
(ℓ(xw,u/k, y)ℓ(xw,v/k, y))

k−1 = e−(xw,u+ww,v)y,

and limk→∞ k(ys(xu,w/k)ℓ(xv,w/k, y)+ ys(xv,w/k)ℓ(xu,w/k, y)) = (xu,w +xv,w)y. Moreover, it is not

hard to show that limx→0+ T (x, y) exists, and is equal to a(1)y/2. Thus,

lim
k→∞

kQ(xu,w/k,xv,w/k, y) =
a(1)(xu,w +xv,w)y

2

2
.

By combining all these expressions, limk→∞ objGk
(e, y) is equal to

∑
f∈∂̃(e)

T (xf +xfc , y) · s(xf )ye
−(xw,u+xw,v)y

∏
g∈∂̃(e)\{f}

ℓ(xg, y)

+

(
a(1)(xu,w +xv,w)y

2

2
+1

)
e−(xw,u+xw,v)y

∏
g∈∂̃(e)

ℓ(xg, y).

Let us now compare limk→∞ objGk
(e, y) with objG(e, y), the latter of which we rewrite in the

following way:

∑
f∈∂̃(e)

T (xf +xfc , y) · s(xf )y
∏

g∈∂(e)\{f}

ℓ(xg, y)+
∏

g∈∂(e)

ℓ(xg, y)+Q(xu,w, xv,w, y)
∏

g∈∂̃(e)

ℓ(xg, y).

Define D1(y) to be the difference of each expression’s first term:

D1(y) :=
∑

f∈∂̃(e)

(
ℓ(xu,w, y)ℓ(xv,w, y)− e−(xw,u+ww,v)y

)
T (xf +xfc , y)ys(xf )

∏
g∈∂̃(e)\{f}

ℓ(xg, y).
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Similarly, let D2(y) be the difference of each expression’s remaining terms:

(
ℓ(xu,w, y)ℓ(xv,w, y)+Q(xu,w, xv,w, y)−

(
1+

a(1)(xu,w +xv,w)y
2

2

)
e−(xw,u+xw,v)y

) ∏
g∈∂̃(e)

ℓ(xg, y).

Observe now that using the dominated convergence theorem, we can exchange the order of inte-

gration and point-wise convergence so that

lim
k→∞

∫ 1

0

objGk
(e, y)dy=

∫ 1

0

lim
k→∞

objGk
(e, y)dy.

Thus, to complete the proof it suffices to show that
∫ 1

0
Di(y)dy ≥ 0 for each i ∈ [2]. We start

with D1. Observe that ℓ(xu,w, y)ℓ(xv,w, y)− e−(xw,u+xw,v)y ≥ 0 for all y ∈ [0,1] by the first property

of Proposition 10. Moreover, the remaining terms in each summand of D1 are non-negative, so∫ 1

0
D1 ≥ 0. Consider now D2. Observe that the function y→

∏
g∈∂̃(e) ℓ(xg, y) is non-negative and

non-increasing for y ∈ [0,1], as ℓ(xg, y) = 1− ys(xg), and s(xg) ∈ [0,1] for xg ∈ [0,1]. Moreover, by

the second property of Proposition 10, since Q(xu,w, xv,w, y) = T (xu,w+xv,w, y)(ys(xu,w)ℓ(xv,w, y)+

ys(xv,w)ℓ(xu,w, y)), the function

y→
(
ℓ(xu,w, y)ℓ(xv,w, y)+Q(xu,w, xv,w, y)−

(
1+

a(1)(xu,w +xv,w)y
2

2

)
e−(xw,u+xw,v)y

)
,

is initially non-negative, changes sign at most once, and has a non-negative integral. Thus, we can

apply Proposition 11 (with λ as the first function, and ϕ as the second), to conclude that
∫ 1

0
D2 ≥ 0.

C.7. Proof of Proposition 10

We verify Proposition 10 for the attenuation function a1(x) = (1− (3− e)x)2.

Recall that ℓ(x, y) = 1−yxa1(x). The first property can be checked easily: the minimum value of

ℓ(x1, y)ℓ(x2, y)− exp(−(x1 + x2)y) over x1, x2, y ∈ [0,1] occurs either when of x1 = x2 = 0 or y = 0,

for which ℓ(x1, y)ℓ(x2, y)− exp(−(x1 +x2)y) = 0.

The second property is more complicated to verify. Recall that

T (x1 +x2, y) =
s(1−x1−x2)

x1 +x2

(
1− 1− e−(x1+x2)y

(x1 +x2)y

)
,
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and Q(x1, x2, y) = T (x1+x2, y)(ys(x1)ℓ(x2, y)+ys(x2)ℓ(x1, y)). Set I(x1, x2) :=
∫ 1

0
ℓ(x1, z)ℓ(x2, z)+

Q(x1, x2, s) − e−(x1+x2)z
(
1+ (x1+x2)a(1)z

2

2

)
dz. This function has a closed form, and its min-

imum occurs when x1 = x2 = 0. Next, let Fx1,x2(z) := ℓ(x1, z)ℓ(x2, z) + Q(x1, x2, z) −

e−(x1+x2)z
(
1+ (x1+x2)a(1)z

2

2

)
. It can be observed that for x1, x2 ∈ [0,1], Fx1,x2(0) = 0, F ′

x1,x2
(0)≥ 0,

and F ′′
x1,x2

(z) ≤ 0 for all z ∈ (0,1). These can be checked easily by e.g. numerically minimizing

F ′
x1,x2

(0) over x1, x2 ∈ [0,1] and numerically maximizing F ′′
x1,x2

(z) over x1, x2, z ∈ [0,1] (we find that

the minimum of F ′
x1,x2

(0) is F ′
x1,x2

(0) = 0, and the maximum of F ′′
x1,x2

(z) occurs for x1 = x2 = 0

where F ′′
0,0(z) = 0 for all z). Thus, Fx1,x2(z) is initially nonnegative and increasing. Now, suppose

for sake of contradiction that for a given x1, x2, there exist two points z1 < z2 for which Fx1,x2

changes sign, and without loss of generality, assume these are the first two such points. Since Fx1,x2

is initially nonnegative and increasing, it must be the case that Fx1,x2 is positive on the interval

(0, z1) with F ′
x1,x2

(z1)< 0 and negative on the interval (z1, z2) with F ′
x1,x2

(z2)> 0. Therefore, it must

be the case that F ′
x1,x2

(z) is increasing on the interval (z1, z2), but this means that F ′′
x1,x2

(z)> 0

somewhere on this interval; however, it was observed previously that F ′′
x1,x2

(z) ≤ 0 on the entire

interval (0,1).

C.8. Proof of Lemma 5

Fix f = (u,w) ∈ ∂(u) \ {e} and f ′ = (v,w′) ∈ ∂(v) \ {e}, where we observe that w ̸= w′, as G is

triangle-free. It suffices to prove that

P[sblf ∩ sblf ′ |max{Yf , Yf ′}< y]≥ T (xf , y) ·T (xf ′ , y),

where T (x, y) = s(1−x)

x

(
1− 1−e−xy

xy

)
. Now, P[sblf ∩ sblf ′ |max{Yf , Yf ′}< y] is equal to:

P[sblf (w,w′)∩ sblf ′(w,w′) |max{Yf , Yf ′}< y] +
∑

h∈∂(w)\{f,(w,w′)},
h′∈∂(w′)\{f ′,(w,w′)}

P[sblf (h)∩ sblf ′(h′) |max{Yf , Yf ′}< y].

(EC.6)

We first lower bound the left-most term of (EC.6), which corresponds to when f and f ′ are si-

multaneously blocked by the same edge (w,w′). In this case, for any z < y, P[min{Yf , Yf ′} ≤ z |
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max{Yf , Yf ′}< y] = 2z/y− (z/y)2, and so the probability density function of min{Yf , Yf ′} (condi-

tional on max{Yf , Yf ′}< y) is z→ 2/y−2z/y2. Thus, P[sblf (w,w′)∩ sblf ′(w,w′) |max{Yf , Yf ′}< y]

is equal to

∫ y

0

P[sblf (w,w′)∩ sblf ′(w,w′) |min{Yf , Yf ′}= z,max{Yf , Yf ′}< y]

(
2

y
− 2z

y2

)
dz

=

∫ y

0

(
2

y
− 2z

y2

)∫ z

0

s(xw,w′)
∏

g∈∂(w,w′)\{f,f ′}

(1− s(xg)yw,w′)dyw,w′dz

≥
∫ y

0

s(xw,w′)

(
2

y
− 2z

y2

)
1− e−z(2(1−xw,w′ )−xf−xf ′ )

2(1−xw,w′)−xf −xf ′
dz,

where we defer the details of the inequality, as it follows from the exact same computations used

in the proof of Lemma 2 (see (EC.3), and the integral that follows immediately afterwards). Define

Q(xf , xf ′ , xw,w′ , y) to be the final integral above, which has the closed form expression:

s(xw,w′)(2− 2e−(2(1−xw,w′ )−xf−xf ′ )y − (2(1−xw,w′)−xf −xf ′)y(2− (2(1−xw,w′)−xf −xf ′)y)))

(2(1−xw,w′)−xf −xf ′)3y2
,

so that P[sblf (w,w′)∩ sblf ′(w,w′) |max{Yf , Yf ′}< y]≥Q(xf , xf ′ , xw,w′ , y).

We now consider the right-most term of (EC.6). Let h ∈ ∂(w) \ {f, (w,w′)} and h′ ∈ ∂(w′) \

{f ′, (w,w′)}. We first prove a form of positive correlation between the events sblf (h) and sblf ′(h′).

Specifically,

P[sblf (h)∩ sblf ′(h′) |max{Yf , Yf ′}< y]≥ P[sblf (h) | Yf < y] ·P[sblf ′(h′) | Yf ′ < y]. (EC.7)

In order to see this, let us write h = (w,r) and h′ = (w′, r′). Observe that due to the lack of 5-

cycles, r ̸= r′. As a result, the events sblf (h) and sblf ′(h′) depend on different independent random

variables, except for the (possible) random variables associated with the edges (w,w′) and (r, r′).

Thus, if yh < yf < y and yh′ < yf ′ < y, then P[sblf (h)∩ sblf ′(h′) | Yf = yf , Yf ′ = yf ′ , Yh = yh, Yh′ = yh′ ]

is equal to

∏
g∗∈{(w,w′),(r,r′)}

(1−max{yh′ , yh}s(xg∗))
∏

g∈∂(h)\{f,(w,w′),(r,r′)}

(1− yhs(xg))
∏

g′∈∂(h′)\{f ′,(w,w′),(r,r′)}

(1− yh′s(xg′))

(EC.8)
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The product over g∗ ∈ {(w,w′), (r, r′)} follows since we require (w,w′) and (r, r′) to be irrelevant for

both h and h′: this occurs precisely when Sg∗ = 0 or Yg∗ >max{Yh, Yh′}. The other two products

use the fact that the sets ∂(h) \ {f, (w,w′), (r, r′)} and ∂(h′) \ {f, (w,w′), (r, r′)} are disjoint, and

so the relevant random variables for h and h′ are independent. Now, for any yh, y
′
h ∈ [0, y) and

g∗ ∈ {(w,w′), (r, r′)}, P[Sg∗ = 0 or Yg∗ >max{yh, yh′} | Yh = yh, Yh′ = yh′ ] is lower bounded by

(1− yhs(xg∗))(1− yh′s(xg∗)), (EC.9)

as P[Yg∗ > max{yh, yh′} | Yh = yh, Yh′ = yh′ ] = 1 − max{yh, yh} ≥ (1 − yh)(1 − yh′). Observe that

(EC.9) is equal to P[Yg∗ > yh or Sg∗ = 0 | Yh = yh] ·P[Yg∗ > yh′ or Sg∗ = 0 | Yh′ = yh′ ], and so

(EC.8)≥
∏

g∈∂(h)\{f}

(1− yhs(xg))
∏

g′∈∂(h′)\{f ′}

(1− yh′s(xg′))

= P[sblf (h) | Yf = yf , Yh = yh] ·P[sblf ′(h′) | Yf ′ = yf ′ , Yh′ = yh′ ].

By integrating over yf , yf ′ ∈ [0, y) and yh ∈ [0, yf ), yh′ ∈ [0, yf ′), (EC.7) follows.

Now, Lemma 2 implies that P[sblf (h) | Yf < y] ·P[sblf (h′) | Yf ′ < y] is lower bounded by

s(xh)

2(1−xh)−xf

(
1− 1− e−(2(1−xh)−xf )y

(2(1−xh)−xf )y

)
s(xh′)

2(1−xh′)−xf ′

(
1− 1− e−(2(1−xh′ )−xf ′ )y

(2(1−xh′)−xf ′)y

)
(EC.10)

Moreover, when summing (EC.10) over h∈ ∂(w)\{f, (w,w′)} and h′ ∈ ∂(w)\{f ′, (w,w′)}, Lemma 3

implies that the minimum occurs when |∂(w) \ {f, (w,w′)}| = |∂(w′) \ {f ′, (w,w′)}| = 1, and if h

and h′ are the respective edges of these sets, then xh = 1−xf −xw,w′ and xh′ = 1−xf ′ −xw,w′ . In

this case, the sum simplifies to

s(1−xf −xw,w′)

xf +2xw,w′

(
1− 1− e−(xf+2xw,w′ )y

(xf +2xw,w′)y

)
s(1−xf ′ −xw,w′)

xf ′ +2xw,w′

(
1− 1− e−(xf ′+2xw,w′ )y

(xf ′ +2xw,w′)y

)
.

and so
∑

h∈∂(w)\{f,(w,w′)},
h′∈∂(w′)\{f ′,(w,w′)}

P[sblf (h)∩ sblf ′(h′) |max{Yf , Yf ′}< y] is no greater than

s(1−xf −xw,w′)

xf +2xw,w′

(
1− 1− e−(xf+2xw,w′ )y

(xf +2xw,w′)y

)
s(1−xf ′ −xw,w′)

xf ′ +2xw,w′

(
1− 1− e−(xf ′+2xw,w′ )y

(xf ′ +2xw,w′)y

)
. (EC.11)

Putting everything together, P[sblf ∩ sblf ′ |max{Yf , Yf ′}< y] is lower bounded by

Q(xf , xf ′ , xw,w′ , y)+
s(1−xf −xw,w′)

xf +2xw,w′

(
1− 1− e−(xf+2xw,w′ )y

(xf +2xw,w′)y

)
s(1−xf ′ −xw,w′)

xf ′ +2xw,w′

(
1− 1− e−(xf ′+2xw,w′ )y

(xf ′ +2xw,w′)y

)
.

(EC.12)
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For any choice of xf , xf ′ , y ∈ [0,1], the r.h.s. of (EC.12) is minimized when xw,w′ = 0. Since

Q(xf , x
′
f ,0, y) = 0, and (EC.11) is equal to T (xf , y)T (xf ′ , y) when xw,w′ = 0, this completes the

proof.

C.9. Proof of Lemma 6

Our goal is to prove that y→ objG\e(v, y) is non-negative and non-increasing for y ∈ [0,1], where

objG\e(v, y) =
∏

g∈∂(v)\e

ℓ(xg, y)+
∑

f∈∂(v)\e

T (xf , y) · s(xf )y
∏

g∈∂(v)\{f,e}

ℓ(xg, y). (EC.13)

By individually considering the various terms of (EC.13), it is easy to see that objG\e(v, y) is

non-negative, so we focus on proving that objG\e(v, y) is non-increasing.

Fix k ≥ 1. We first construct an input G∗
k = (V ∗

k ,E
∗
k) with fractional matching x∗ = (x∗

f )f∈E∗
k
.

The first part of the construction copies the neighborhood structure of e= (u, v) in G. Specifically,

we add the vertices of NG(u) ∪NG(v) to V ∗
k , as well as the edges of ∂G(u) ∪ ∂G(v) to E∗

k (this

includes the edge e = (u, v)). The fractional edge values also remain the same: i.e., x∗
f = xf for

each f ∈ ∂G(u)∪∂G(v). The next part of the construction modifies the second and third neighbors

of v. For each w ∈ NG(v) \ {u}, we add a new vertex w′, and add the edge (w,w′) to E∗
k while

setting x∗
w,w′ := 1−xv,w. Denote the set of these vertices by W ′. Finally, for each w′ ∈W ′, we add

k distinct vertices, say w′′
1 , . . . ,w

′′
k , and set x∗

w′,w′′
i
= xv,w/k for each i= 1, . . . , k.

Let us now consider executing Algorithm 2 on G∗
k using the random arrival times (Yf )f∈E∗

k
, as

well as (Xf )f∈E∗
k
and (Sf )f∈E∗

k
. (For notational convenience, we can assume that the same random

variables are used for the edges which are in both G and G∗
k). For each y ∈ [0,1], let Mk(y) be

the matching returned by executing Algorithm 2 on G∗
k when restricted to the edges which arrive

before time y. Recall that Re denotes the relevant edges for e, where f ∈ ∂G(e) is relevant provided

Yf <Ye and Sf = 1. Setting Rv =Re ∩ ∂(v) \ {u}, we claim that

y→ P[v ∈ V (Mk(y)), |Rv| ≤ 1 | Ye = y] (EC.14)

is a non-decreasing function of y. (Here V (Mk(y)) is the vertices matched by Algorithm 2 before

time y). This follows by taking y1 < y2, and coupling the executions of Algorithm 2, conditional on
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Ye = y1 and Ye = y2, respectively. Once this is done, it is easy to show that if v ∈ V (Mk(y1)) and

|Rv| ≤ 1 both occur, then v ∈ V (Mk(y2)) and |Rv| ≤ 1 both occur. This implication implies the

function specified in (EC.14) is non-decreasing.

To complete the proof, it suffices to show that for each y ∈ [0,1],

P[v /∈ V (Mk(y)), |Rv| ≤ 1 | Ye = y]→ objG\e(v, y),

as k → ∞. To prove this convergence, first observe that P[v /∈ V (Mk(y)), |Rv| = 0 | Ye = y] =∏
g∈∂(v)\{e} ℓ(xg, y). Thus, since T (x, y) = s(1−x)

x

(
1− 1−e−xy

xy

)
in (EC.13), and for w ∈NG(v) \ {u}

we have that P[Rv = {(v,w)} | Ye = y] = s(xv,w)y
∏

g∈∂(v)\{(v,w),e} ℓ(xg, y), it remains to prove that

as k→∞,

P[v /∈ V (Mk(y)) | Rv = {(v,w)}, Ye = y]→ s(1−xv,w)

xv,w

(
1− 1− e−xv,wy

xv,wy

)
.

Due to the neighborhood structure of w ∈NG(v)\{u}, if we condition on Ye = y and Rv = {(v,w)},

then v /∈ V (Mk(y)) occurs if and only if (w,w′) is a simple-blocker for (v,w) with respect to the

execution on G∗
k (see Definition 5 for a review of this terminology). If we denote the latter event

by sbl(k)(v,w)(w,w
′) then this implies that

P[v /∈ V (Mk(y)) | Rv = {(v,w)}, Ye = y] = P[sbl(k)(v,w)(w,w
′) | Rv = {(v,w)}, Ye = y]. (EC.15)

Now, w′ has neighbors w′′
1 , . . . ,w

′′
k apart from w. Thus, by applying the same computations from

the proof of Lemma 2 and taking k→∞,

P[sbl(k)(v,w)(w,w
′) | {Rv = {(v,w)}, Ye = y] = s(x∗

w,w′)

∫ y

0

∫ yv,w

0

k∏
i=1

(1− s(x∗
w′,w′′

i
)yw,w′)dyw,w′dyv,w

→ s(x∗
w,w′)

∫ y

0

∫ yv,w

0

e−kx∗v,wyw,w′dyw,w′dyv,w

=
s(1−xv,w)

xv,w

(
1− 1− e−xv,wy

xv,wy

)
,

where the last equality uses kx∗
v,w = xv,w and x∗

v,w = 1−xv,w. By combining this with (EC.15), the

convergence is proven, and so the proof is complete.
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C.10. Proof of Lemma 7

Recall that w ∈NG(u) \ {v} is the vertex which is copied k ≥ 1 times in the construction Gk,

yielding w1, . . . ,wk instead of w. For convenience, we define ∂̃(u) := ∂G(u) \ {(w,u), (u, v)}. Now,

since w /∈NG(v), we know that objG(v, y) = objGk
(v, y). Thus, the goal is to prove that∫ 1

0

(objG(u, y)− lim
k→∞

objGk
(u, y)) · objG(v, y)dy≥ 0, (EC.16)

where we’ve used the dominated convergence theorem in order to exchange the order of the

point-wise convergence and integration. We first compute limk→∞ objGk
(u, y). Now, recalling that

T (x, y) = s(1−x)

x

(
1− e−xy

xy

)
, we can write objGk

(u, y) as:

∑
f∈∂̃(u)

T (xf , y)ys(xf )ℓ(xw,u/k, y)
k

∏
g∈∂̃(u)\{f}

ℓ(xg, y)+ kT (xu,w/k, y)ys(xu,w/k)ℓ(xw,u/k, y)
k−1

∏
g∈∂̃(u)

ℓ(xg, y)

+ℓ(xw,u/k, y)
k
∏

g∈∂̃(u)

ℓ(xg, y).

(Here the middle term groups the contributions of the edges (u,wi) for each 1≤ i≤ k). By using

the continuity of a, and the fact that a(0) = 1,

lim
k→∞

ℓ(xw,u/k, y)
k = lim

k→∞
ℓ(xw,u/k, y)

k−1 = e−xw,uy, lim
k→∞

k(ys(xu,w/k)ℓ)ℓ(xu,w/k, y)) = yxu,w.

Moreover, limx→0+ T (x, y) = a(1)y/2. Thus, limk→∞ kT (xu,w/k, y)ys(xu,w/k) =
a(1)xu,wy2

2
. By com-

bining all these expressions, limk→∞ objGk
(u, y) is equal to

∑
f∈∂̃(u)

T (xf , y) · s(xf )ye
−xw,uy

∏
g∈∂̃(u)\{f}

ℓ(xg, y)+

(
a(1)xu,wy

2

2
+1

)
e−xw,uy

∏
g∈∂̃(u)

ℓ(xg, y).

Let us now compare limk→∞ objGk
(u, y) to objG(u, y), the latter of which we rewrite in the following

way:

∑
f∈∂̃(u)

T (xf , y) · s(xf )y
∏

g∈∂(u)\{f}

ℓ(xg, y)+
∏

g∈∂(u)

ℓ(xg, y)+T (xu,w, y)s(xu,w)y
∏

g∈∂̃(u)

ℓ(xg, y).

Let D1(y) be the difference of each function’s first term, after multiplying each by objG(v, y). I.e.,

D1(y) :=
∑

f∈∂̃(u)

(
ℓ(xu,w, y)− e−xu,wy

)
T (xf , y)ys(xf ) · objG(v, e)

∏
g∈∂̃(u)\{f}

ℓ(xg, y).
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Similarly, let D2(y) be the difference of each function’s remaining terms, after multiplying each by

objG(v, y). I.e.,

D2(y) :=

(
ℓ(xu,w, y)+T (xu,w, y)s(xu,w)y−

(
1+

a(1)xu,wy
2

2

)
e−xu,wy

)
· objG(v, e)

∏
g∈∂̃(u)

ℓ(xg, y).

Our goal is to show that
∫ 1

0
Di(y)dy≥ 0 for each i∈ [2], as this will establish (EC.16) and complete

the proof. We start with D1. Observe that ℓ(xu,w, y) − e−xu,wy ≥ 0 for all y ∈ [0,1] by the first

property of Proposition 10. Moreover, the remaining terms in each summand of D1 are non-

negative, so
∫ 1

0
D1 ≥ 0. Consider now D2. Observe that the function y→

∏
g∈∂̃(u) ℓ(xg, y) is non-

negative and non-increasing for y ∈ [0,1], as ℓ(xg, y) := 1− ys(xg), and s(xg) ∈ [0,1] for xg ∈ [0,1].

By Lemma 6, both properties are also true of the function y→ objG(v, y). Thus, y→ objG(v, y) ·∏
g∈∂̃(e) ℓ(xg, y) satisfies both these properties. Now, by the second property of Proposition 10, the

function

y→ ℓ(xu,w, y)+T (xu,w, y)s(xu,w)y−
(
1+

a(1)xu,wy
2

2

)
e−xu,wy,

is initially non-negative, changes sign at most once, and has a non-negative integral. Thus, we

can apply Proposition 11 with λ(y) := objG(v, y) ·
∏

g∈∂̃(e) ℓ(xg, y) as the first function, and ϕ(y) =

ℓ(xu,w, y)+T (xu,w, y)s(xu,w)y−
(
1+

a(1)xu,wy2

2

)
e−xu,wy as the second, to conclude that

∫ 1

0
D2 ≥ 0.

C.11. Proof of Proposition 14 using Lemmas 9 and 10

We apply Corollary 4 from Bennett and MacRury (2023), where we have intentionally chosen the

below notation to match Bennett and MacRury (2023).

Define D = [0,1]2, and set f(z, r) := (1− r)2 for (z, r) ∈ D. Recall that w(z) = z/(1 + z) is the

unique solution to the differential equation w′(z) = f(z,w(z)) with initial condition w(0) = 0. to

(W (i)/n2)εn
2

i=0, the filtration (Hi)
εn2

i=0, and the above system. (Note that our scaling factor is n2).

First observe that we can take σ = ε,L= 2, and B = 1 (since f has Lipschitz constant of 2, and

|f | ≤ 1). Recall now the sequence of events (Qi)
εn2

i=0 defined before Lemma 9, and let I be the first

i ≥ 0 such that Qi does not occur. For the remaining parameters, set λ = n5/3, δ = n−1/3 and

b= β = n, Clearly, λ≥max{B+β, L+BL+δn2

3L
} for n sufficiently large.
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We now verify that these parameters satisfy the ‘Boundedness Hypothesis’, ‘Trend Hypothesis’

conditions of [Corollary 4, Bennett and MacRury (2023)] for all 0≤ i <min{εn2, I}. Note that due

to statement of [Corollary 4, Bennett and MacRury (2023)], when verifying these conditions at

step i, we can assume that

W (i)/n2 ≤ (1+O(n−1/3))w(i/n2). (EC.17)

The ‘Boundedness Hypothesis’ is satisfied since |∆W (i)| ≤ n, and Var(∆W (i) | Hi) ≤ n. The

‘Trend Hypothesis’ is satisfied due to Lemma 10 in conjunction with the above definition of I

and (EC.17). Thus, (W (i)/n2)εn
2

i=0 satisfies all the conditions of [Corollary 4, Bennett and MacRury

(2023)] so as to guarantee that W (i)/n2 ≤ (1 + O(n−1/3))w(i/n2) for all 0 ≤ i ≤ {I, εn2} with

probability at least 1−o(n−2). Finally, due to Lemma 9, P[I ≤ εn2] = o(n−2), and so a union bound

implies that the proposition holds.

Appendix D: Bipartite Reduction to 1-Regular Inputs

In this section, we prove a reduction to 1-regular inputs for RCRS/OCRS which preserves bipar-

titeness.

Lemma EC.2 (Reduction to 1-Regular Inputs for Bipartite Graphs). Given a bipartite

graph G = (U,V,E) with fractional matching x = (xe)e∈E, there exists bipartite graph G′ =

(U ′, V ′,E′) and a fractional matching x′ = (x′
e)e∈E′ with the following properties:

1. (G′,x′) can be computed in time polynomial in the size of (G,x).

2. (G′,x′) is 1-regular.

3. If there is an α-selectable RCRS (respectively, OCRS) for G′ and x′, then there exists an

α-selectable RCRS (respectively, OCRS) for G and x.

Proof. The graph G′ is constructed as follows. First, assume without loss of generality that

|U |= |V | (we can do this by creating dummy vertices on the smaller side with edge values of 0).

Let n := |U |. We create a biclique Kn,n = (UK ∪VK ,EK) of dummy vertices. Let EG,K = (U ×VK)∪

(UK ∪V ) be a set of edges connecting every vertex in G to each of the vertices of the dummy Kn,n.

Let U ′ =U ∪UK , V
′ = V ∪VK , and E′ =E ∪EK ∪EG,K .
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Then, x′ is given by setting x′
e = xe for every e ∈ E and x′

e = (1− xu)/n for e= (u, v) ∈ EG,K ,

where xu :=
∑

v∈V xu,v. Clearly, for u∈U , we have that
∑

v∈V ′ x′
uv = 1 and similarly for v ∈ V , we

have that
∑

u∈U ′ x′
uv = 1.

Finally, for e = (u, v) ∈ EK , set x′
uv :=

1
n2

∑
v∈V xv. Note that by the handshaking lemma, we

have that
∑

v∈V xv =
∑

u∈U xu so x′
uv =

1
n2

∑
u∈U xu. Therefore, for u∈UK :

x′
u =

∑
v∈V ′

x′
uv =

∑
v∈V

x′
uv +

∑
v∈VK

x′
uv =

1

n

∑
v∈V

(1−xv)+
∑

vK∈VK

1

n2

∑
v∈V

xv =
1

n

∑
v∈V

(1−xv)+
1

n

∑
v∈V

xv = 1

and similarly, for v ∈ VK :

x′
v =

∑
u∈U

x′
uv +

∑
u∈UK

x′
uv =

1

n

∑
u∈U

(1−xu)+
∑

uK∈UK

1

n2

∑
u∈U

xu =
1

n

∑
u∈U

(1−xv)+
1

n

∑
u∈U

xu = 1.

Since |U ′|= 2|U |, |V ′|= 2|V |, and |E′ \E|= |U |2|V |2, we can construct G′ and x′ efficiently. By

the same argument as in the proof of Lemma EC.1, an α-selectable RCRS (respectively, OCRS)

for (G′,x′) can be used to get an α-selectable RCRS (respectively, OCRS) for (G,x). □
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