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Abstract. Motivated by the Beck-Fiala conjecture, we study the discrepancy problem in two
related models of random hypergraphs on n vertices and m edges. In the first model, each of the
m edges is constructed by placing each vertex into the edge independently with probability d/m,
where d is a parameter satisfying d → ∞ and dn/m → ∞. In the second model, each vertex
independently chooses a subset of d edge labels from [m] uniformly at random. Edge i is then
defined to be exactly those vertices whose d-subsets include label i.

In the sparse regime, i.e. when m = O(n), we show that with high probability a random hyper-
graph from either model has discrepancy at least Ω(2−n/m

√
dn/m).

In the dense regime, i.e. when m� n, we show that with high probability a random hypergraph
from either model has discrepancy at least Ω(

√
(dn/m) log γ), where γ = min{m/n, dn/m}. Fur-

thermore, we obtain nearly matching asymptotic upper bounds on the discrepancy. Specifically,
we apply the partial colouring lemma of Lovett and Meka to show that, in the dense regime, with
high probability the two random hypergraph models each have discrepancy O(

√
dn/m log(m/n)).

In fact, in a significant parameter range we can tighten our analysis to get an upper bound which
matches our lower bound up to a constant factor. This result is algorithmic, and together with
the work of Bansal and Meka (SODA, 2019), characterizes how the discrepancy of each random
hypergraph transitions from Θ(

√
d) to o(

√
d) as m increases from m = Θ(n) to m� n.

1. Introduction

A hypergraph1 H = (V,E) consists of a set V = {v1, . . . , vn} of n vertices together with a
multiset E = {e1, . . . , em} of m edges, where each edge ei is a subset of V . We denote the size of
an edge e as |e|. Note that H is allowed to have duplicate edges (i.e. we may have ei = ei′ for some
i 6= i′). We can bijectively represent H by an m× n {0, 1}-matrix A = A(H) = (Ai,j)16i6m, 16j6n,
where Ai,j = 1 if vj ∈ ei and Ai,j = 0 if vj /∈ ei. We call A the incidence matrix of H. In
particular, each pair of duplicate edges in H corresponds to a pair of identical rows in A. Moreover,
we define the degree of a vertex vj of H to be the number of edges containing that vertex, i.e. the
number of 1’s in the jth column of A. A classical problem in discrepancy theory is to find a 2-
colouring of the vertices of H so that every edge is as “balanced” as possible. To make this more
precise, we define a colouring of H to be a function ψ : V → {−1, 1}. This can be extended to a
map ψ : E → Z, by defining ψ(e) :=

∑
v∈e ψ(v) for each e ∈ E. We call |ψ(e)| the discrepancy

of edge e, and note that it measures how unbalanced the colouring ψ is on that edge. Further, the
discrepancy of colouring ψ, denoted disc(ψ), is the discrepancy of the least balanced edge of H.
That is,

disc(ψ) := max
e∈E
|ψ(e)|

Finally, we define the discrepancy of hypergraph H as

disc(H) := min
ψ

disc(ψ),

1The definition of a hypergraph is equivalent to that of a set system, though we exclusively use the former
terminology in this work.
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where the minimization is over all colourings of V . This definition and other related notions of
combinatorial discrepancy have been studied from various angles and in different contexts. (For a
more detailed introduction to the subject, we refer to books [20], [9] and [10].)

1.1. An Overview of Worst-Case Results. One of the central problems in discrepancy theory
in the above setting is to bound the discrepancy of a hypergraph H in terms of its maximum degree
d. In [7], it was proven by Beck and Fiala that the discrepancy of H is no larger than 2d − 1.
Moreover, they conjectured that the correct upper bound is of the order O(d1/2). There has been
much work in trying to improve on the original bound of [7]. Most recently, it was proven by Bukh [8]
that disc(H) 6 2d − lg∗(d), where lg∗ is the binary iterated logarithm. This of course yields no
asymptotic improvement in terms of d, but to this date is the strongest upper bound known which
solely depends on d. If the upper bound is allowed dependence on the multiple parameters of the
hypergraph, then there are results yielding improvements for hypergraphs in the correct range of
parameters. For instance, Banaszczyk [3] showed that if n := |V |, then disc(H) = O(

√
d log n)—a

bound which was later made algorithmic by Bansal et al. [4]. Potukuchi [23] proved that, for d-
regular H, disc(H) = O(

√
d+λ), where λ := maxv⊥1,‖v‖2=1 ‖A v‖2 and A is the incidence matrix of

H. Bansal, Laddha, and Vempala [5] have since proven a more general theorem which includes this
bound as a special case. Very recently, Presenti and Vladu proved that disc(H) = O(

√
d+
√
λ log n),

which improves on [5, 23] when λ = Ω(log n). The upper bounds of [5, 21, 23] are each algorithmic.
In order to find upper bounds which depend solely on the maximum degree, restricted classes of

hypergraphs have instead been studied. For example, if H = (V,E) is assumed to be both d-regular
and d-uniform (that is, the incidence matrix A has exactly d 1’s in each column and row), then
a folklore application of the Lovász local lemma can be used to show that there exists a colouring
which achieves discrepancy O(

√
d log d) (see [12, 22] for details).

1.2. Random Discrepancy Models. Another approach is to restrict one’s attention to hyper-
graphs which are generated randomly. In this work, we focus on two specific random hypergraph
models. Both of these models are defined as distributions over the set of hypergraphs with n > 1
vertices and m > 1 edges.

1.2.1. The Edge-Independent Model. In [17], Hoberg and Rothvoss introduced a random hypergraph
model, denoted H(n,m, p), in which a probability parameter 0 6 p 6 1 is given (in addition to n
and m). Their model, which we refer to as the edge-independent model, is a distribution on
hypergraphs which we describe through the following randomized procedure:

• Fix the vertex set V = {v1, . . . , vn}.
• For each 1 6 i 6 m, construct edge ei by placing each v ∈ V in ei independently with
probability p.

We denote E = {e1, . . . , em} and define H(n,m, p) to be the distribution of the random hyper-
graph H = (V,E). In other words, the entries of the incidence matrix A of H are independent
Bernoulli random variables of parameter p. We write H ∼ H(n,m, p) to indicate that H is drawn
from H(n,m, p).

If m = m(n) and p = p(n) are functions which depend on n, then we say that H(n,m, p) satisfies
a property Q = Q(n) w.h.p., provided that P[H(n) satisfies Q(n)]→ 1 as n→∞, where H = H(n)
is drawn from H(n,m, p). Often, we abuse terminology slightly and say that the random hypergraph
H satisfies Q w.h.p.

Hoberg and Rothvoss showed that, if n > C1m
2 logm and C1(log n)/m 6 p 6 1/2 for some

sufficiently large constant C1 > 0, then disc(H) 6 1 w.h.p. for H ∼ H(n,m, p). A natural question
left open by their work is whether or notH continues to have constant discrepancy when n transitions
from C1m

2 logm to Θ(m logm). Potukuchi [22] provided a positive answer to this question for the
special case when p = 1/2 by showing that if n > C2m logm for C2 = (2 log 2)−1, then w.h.p.
disc(H) 6 1. Recently, Altschuler and Niles-Weed [2] used Stein’s method [11] in conjunction with
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the second moment method to substantially generalize this result to hold when p = p(n) depends
on n. This includes the challenging case when p(n)→ 0.

1.2.2. The Edge-Dependent Model. A related model was introduced by Ezra and Lovett in [12]. As
before, we fix n > 1 and m > 1, yet we now also consider a parameter d > 1 which satisfies d 6 m.
The edge-dependent model, denoted H(n,m, d), is again a distribution on hypergraphs, though
we describe it through a different randomized procedure:

• Fix vertex set V = {v1, . . . , vn}.
• For each vertex v ∈ V , independently and u.a.r. (uniformly at random) draw Iv ⊆ [m] with
|Iv| = d.
• For each 1 6 i 6 m, construct edge ei by defining ei := {u ∈ V : i ∈ Iu}.

By setting E := {e1, . . . , em}, we define H(n,m, d) to be the distribution of the random hyper-
graph H = (V,E). In other words, the incidence matrix A of H ∼ H(n,m, d) is a random m × n
matrix where each column has d ones and m−d zeros. Note that the columns of A are independent,
but the rows are not. We define what it means for H(n,m, d) to satisfy a property w.h.p. in the
same way as in the edge-independent model.

Ezra and Lovett showed that, if m > n > d → ∞, then w.h.p. disc(H) = O(
√
d log d). Bansal

and Meka [6] later showed that the factor of
√

log d is redundant, thereby matching the bound
claimed in the Beck-Fiala conjecture. Specifically, they showed that, for the entire range of n and
m, disc(H) = O(

√
d) w.h.p., provided d = Ω((log logm)2). We note that the result of Potukuchi

[23] implies that the Bansal and Meka upper bound in fact holds for all d. In the edge-independent
model, the work of Bansal and Meka can be easily modified to yield a O(

√
pm) upper bound,

provided the analogous condition pm = Ω((log logm)2) holds.
In [14], Franks and Saks considered the more general problem of vector balancing. Their

main result concerns a collection of random matrix models in which the columns are generated
independently. In particular, their results apply to the sparse regime (m� n) of both the random
hypergraph models we have discussed. Specifically, they show that if n = Ω(m3 log3m), then w.h.p.
disc(H) 6 2, provided H is drawn from H(n,m, p) or H(n,m, d) for p = d/m. Finally, in a very
recent work, Turner et al. [25] considered the problem of vector balancing when the entries of the
random matrixA are each distributed as standard Gaussian random variables which are independent
and identically distributed (i.i.d.). Amongst other results, they showed that the discrepancy of A
is Θ(2−n/m

√
n) w.h.p., provided m� n.

1.3. An Overview of Our Results. All results proven in this paper are asymptotic with respect
to the parameter n, the number of vertices of the model. Thus, we hereby assume that m = m(n),
p = p(n) and d = d(n) are functions which depend on n, with p = d/m.

While previous results have successfully matched (or improved upon) the conjectured Beck-Fiala
bound of

√
d in the random hypergraph setting, they either apply to a restricted parameter range [12,

14, 17, 22], or do not provide asymptotically tight results for the full parameter range [6, 12]. In
particular, when n/ log n� m� n or m� n, the correct order of the discrepancy was previously
unknown in either model. We provide the first lower bounds which apply to the full parameter
range under the mild assumption that both the average edge size dn/m = pn and degree d = pm
tend to infinity with n.

Theorem 1.1. Suppose that H is generated from H(n,m, p) with pn→∞, pm→∞ and p bounded
away from 1. If m = O(n), then w.h.p.

disc(H) = Ω
(

max{2−n/m√pn, 1}
)
,

Moreover, if m� n, then w.h.p.

disc(H) = Ω
(√

pn log γ
)
,
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where γ := min{m/n, pn}.

Remark 1. This bound complements the upper bound of 1 in [2] for m 6 Cn/ log n where C =
2 log 2, but also implies that if ε > 0 is a constant, then H has non-constant discrepancy for
m > (C + ε)n/ log(np). Thus, H exhibits a sharp phase transition at Cn/ log(np) for constant p.

We obtain analogous results regarding the edge-dependent model H(n,m, d):

Theorem 1.2. Suppose that H is generated from H(n,m, d) with dn/m → ∞, d → ∞, and d/m
bounded away from 1. If m = O(n), then w.h.p.

disc(H) = Ω

(
max{2−n/m

√
dn

m
, 1}

)
,

Moreover, if m� n, then w.h.p.

disc(H) = Ω

(√
dn

m
log γ

)
,

where γ := min{m/n, dn/m}.

Remark 2. The techniques used in [2] do not seem to apply to the edge dependent model. Thus,
if m = O(n1/3/ log n), then [14] implies disc(H) 6 2, however when n1/3/ log n � m � n, O(

√
d)

remains the best known upper bound for disc(H) [6].

Consider the parameter range in which n/ log n� m� n, which we can interpret as a refinement
of the sparse regime of m = O(n). In this parameter range, proving the existence of a colouring
whose discrepancy matches our lower bounds remains open for either model. This problem is
particularly challenging from an algorithmic perspective, as the partial colouring lemma [19] does
not appear to be useful in this range of parameters, and this is the main tool used in the literature.

In contrast, in the dense regime of m � n, we obtain an (almost) tight upper bound for both
models. Moreover, our upper bound is algorithmic, and improves upon the O(

√
d) upper bound

of [6]. In particular, at worst our upper bound is O
(√

dn
m log

(
m
n

))
, which is significantly smaller

than the upper bound of O(
√
d) of [6], as m � n. Thus, we show that one can actually beat the

bound of the Beck-Fiala conjecture in the dense regime.

Theorem 1.3. Assume that H is drawn from H(n,m, d) or H(n,m, p) with p = d/m, and pick any
β = β(n) > 1 satisfying2

β
dn

m
> log(m/n)

(
log

(
dn

m

)
+ 2

)5

. (1)

If m� n, and dn/m→∞, then w.h.p.

disc(H) = O

(√
dn

m
log
(m
n

)
β

)
.

Moreover, whenever this holds, we can find a colouring ψ of H with such a discrepancy in expected
polynomial time.

Remark 3. Observe that the smaller we are able to take β, the better upper bound we get. In
particular, if β := log(m/n), then (1) and β(n) > 1 are satisfied (for large enough n). Therefore,

we obtain at worst the upper bound of O
(√

dn
m log

(
m
n

))
.

2Let us remark at this place that by log we always mean the natural logarithm. In the proof of this theorem it is
convenient to use lg to denote logarithm of base 2.
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Theorem 1.3 provides asymptotically matching bounds for the lower bounds of Theorems 1.1
and 1.2 in a broad range of the dense regime m � n. For instance, this happens when d =
pm > (m/n)1+ε, where ε > 0 is a constant, since in that case β := 1 clearly satisfies (1), and
log(dn/m) = Ω(log(m/n)), so γ = Θ(log(m/n)).

Corollary 1.4. Assume that H is drawn from H(n,m, d) or H(n,m, p), where p = d/m. If m� n
and d = pm > (m/n)1+ε for constant ε > 0, then w.h.p.

disc(H) = Θ

(√
dn

m
log
(m
n

))
.

Remark 4. This shows that in the dense regime, the main parameter of interest describing the
discrepancy of each random hypergraph model is the average edge size, dn/m, opposed to d, the
average/maximum degree (depending on the model).

2. Preliminaries

In this section, we first provide some central-limit-type results for sums of independent random
variables, which will be used in Section 3 to obtain lower bounds on the discrepancy. In the sequel,
we write N(0, 1) to denote a generic random variable distributed as a standard Gaussian with
cumulative distribution function

Φ(x) := P[N(0, 1) 6 x] =
1√
2π

∫ x

−∞
exp(−t2/2) dt for each x ∈ R.

The Berry-Esseen Theorem (see section XVI.5 in [13]), which we state below for convenience, yields
a quantitative form of the Central Limit Theorem for sums of independent random variables with
finite third moment.

Theorem 2.1 (Berry-Esseen). The following holds for some universal constant cuni > 0. Let
Y1, . . . , Yn be independent random variables with E[Yi] = 0, E[Y 2

i ] = σ2
i and E[|Yi|3] = ρi < ∞

for all i ∈ [n]. Consider the sum Y =
∑n

i=1 Yi, with standard deviation σ =
√∑n

i=1 σ
2
i , and let

ρ =
∑n

i=1 ρi. Assume σ > 0. Then,

sup
x∈R
|P[Y/σ 6 x]− Φ(x)| 6 (cuni/2)ρ

σ3
.

Remark 5. There has been a series of works improving upon the constant cuni, the latest of which
by Shevtsova [24] shows that cuni/2 6 0.560 in our setting. However, since we are only concerned
with the asymptotic growth of discrepancy, the precise value of cuni is not important.

Theorem 2.1 and the triangle inequality immediately yield the following corollary:

Corollary 2.2. For any interval I ⊆ (−∞,∞),

|P[Y/σ ∈ I]− P[N(0, 1) ∈ I]| 6 cuniρ

σ3
.

We will apply this result to linear combinations of independent Bernoulli’s with coefficients in
{−1, 1}. More precisely, let X1, . . . , Xn be independent random variables with Xi ∼ Ber(pi) for
some p = (p1, . . . , pn) ∈ [0, 1]n (where Ber(pi) is a Bernoulli of parameter pi). Given a vector
a = (a1, . . . , an) ∈ {−1, 1}n, consider the sum Sa,p :=

∑n
k=1 aiXi, whose standard deviation we

denote by σ. Under these assumptions we obtain the following bound.

Lemma 2.3. For any bounded interval [L,R] ⊆ (−∞,∞),

P[Sa,p ∈ [L,R]] 6
cuni
σ

+

(
1− exp

(
−(R− L)2

2πσ2

))1/2

.
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(When σ = 0, the right-hand side of the bound above is simply interpreted as +∞.)

Proof. Let µ = E[Sa,p] =
∑n

i=1 aipi. Then we centre Sa,p by defining the random variables Yi =
ai(Xi − E[Xi]) and setting

Y :=

n∑
k=1

Yi = Sa,p − µ.

Observe that Y has the same standard deviation σ as Sa,p, which we assume is non-zero (otherwise
the lemma holds trivially). Moreover, Sa,p ∈ [L,R] if and only if Y/σ ∈ [L̃, R̃], where L̃ := (L−µ)/σ

and R̃ := (R− µ)/σ. Further,

E[|Yi|3] = (1− pi)p3
i + pi(1− pi)3 = pi(1− pi)

(
p2
i + (1− pi)2

)
6 pi(1− pi),

and hence

ρ =

n∑
i=1

E[|Yi|3] 6
n∑
i=1

pi(1− pi) = σ2.

Then, Corollary 2.2 immediately yields

P[Sa,p ∈ [L,R]] = P[Y/σ ∈ [L̃, R̃]] 6
cuni
σ

+ P[N(0, 1) ∈ [L̃, R̃]].

To finalize the proof, it only remains to bound P[N(0, 1) ∈ [L̃, R̃]]. In order to do so, we will use
the inequality ∫ t

−t
exp(−x2/2) dx 6

√
2π(1− exp(−2t2/π)) for all t ∈ R, (2)

which can be found in [26]. Furthermore, note that exp(−x2/2) is an even function, decreasing with
x2. Combining this fact with (2), we get

P[N(0, 1) ∈ [L̃, R̃]] =
1√
2π

∫ R̃

L̃
exp(−x2/2) dx

6
1√
2π

∫ (R̃−L̃)/2

−(R̃−L̃)/2
exp(−x2/2) dx

=
1√
2π

∫ (R−L)/2σ

−(R−L)/2σ
exp(−x2/2) dx

6

√
1− exp

(
−(R− L)2

2πσ2

)
,

which concludes the proof of the lemma. �

Now suppose there exist 0 < p < 1, 0 < ζ < 1 and 0 6 ε < 1 such that
n∑
i=1

pi > (1− ε)pn and pi 6 ζ for each i ∈ [n]. (3)

Then we can restate the upper bound of Lemma 2.3 in the following convenient way, which we use
as our key tool in proving Theorems 1.1 and 1.2.
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Lemma 2.4. Suppose p1, . . . , pn satisfy (3) for some 0 6 ε < 1, 0 < p < 1 and 0 < ζ < 1. Then,
for any bounded interval [L,R] ⊆ (−∞,∞),

P[Sa,p ∈ [L,R]] 6
cuni√

(1− ζ)(1− ε)np
+

(
1− exp

(
− (R− L)2

2π(1− ζ)(1− ε)np

))1/2

(4)

6
cuni + |R− L|/

√
2π√

(1− ζ)(1− ε)np
. (5)

Proof. First note that the variance σ2 of Sa,p satisfies

σ2 =

n∑
i=1

pi(1− pi) > (1− ζ)

n∑
i=1

pi > (1− ζ)(1− ε)pn.

This bound, used with Lemma 2.3, immediately gives (4). Then (5) follows by applying the in-
equality 1− exp(−x) 6 x, which holds for every x ∈ R. �

In Theorem 1.3, we prove an upper bound on discrepancy in the dense regime (m� n). In this
parameter range, we make use of the algorithmic partial colouring lemma, a seminal result of
Lovett and Meka [19] later made deterministic by Levy, Ramadas, and Rothvoss [18]. We defer the
statement of this result to Lemma 4.1 of Section 4, as it will not be needed until then.

3. Lower Bounding Discrepancy

3.1. The Edge-Independent Model. We now return to the setting of hypergraph discrepancy
in the context of the edge-independent model H(n,m, p). Throughout this section, m = m(n),
p = p(n) and asymptotic statements are with respect to n→∞. We first observe that w.h.p. there
are some edges containing an odd number of vertices and thus the discrepancy cannot be zero.

Proposition 3.1. Suppose H ∼ H(n,m, p) with m→∞, pn→∞ and p bounded away from 1 as
n→∞. Then w.h.p. disc(H) > 1.

Proof. By hypothesis, p 6 1 − ν for some sufficiently small constant ν > 0. Let e1, . . . , em be
the edges of H, and observe that the number of vertices contained in each edge is distributed as
Bin(n, p). Then the probability that ei has an even number of vertices is∑

j even

(
n

j

)
pj(1− p)n−j =

∑
j

(
n
j

)
pj(1− p)n−j +

∑
j

(
n
j

)
(−p)j(1− p)n−j

2

=
1

2
(1 + (1− 2p)n) = 1/2 + o(1), (6)

where we used the fact that |1 − 2p|n 6 max{(1 − 2ν)n, e−2pn} = o(1) as n → ∞. Hence, the
probability all the edges of H contain an even number of vertices is (1/2+o(1))m = o(1). Therefore,
w.h.p. H has an edge with an odd number of vertices, and thus has discrepancy at least 1. �

Proposition 3.1 trivially implies Theorem 1.1 in the regime in which 2−n/m
√
pn = O(1). We now

use Lemma 2.4 to prove the remaining cases of Theorem 1.1 via a simple first moment argument:

Proof of Theorem 1.1. Suppose that H = (V,E) is generated from H(n,m, p) with pn→∞, pm→
∞ and p bounded away from 1, as n→∞. We define

f̂ = f̂(n) =

{
2−n/m

√
p(1− p)n if m = O(n),√

p(1− p)n log γ if m� n,

where γ = min{pn,m/n}, and choose a sufficiently small constant κ > 0. To prove the theorem, it
suffices to show that w.h.p. disc(H) > max{κf̂ , 1}. Note that this is trivially true when f̂ 6 1/κ, in
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view of Proposition 3.1. So we will assume that f̂ > 1/κ, and show that w.h.p. disc(H) > κf̂ . Let
Ψ be the set of all colourings ψ : V → {−1, 1}, and let Z denote the number of colourings ψ ∈ Ψ

with discrepancy disc(ψ) 6 κf̂ . In the rest of the proof, we show that E[Z] = o(1), which implies
that w.h.p. Z = 0 and thus disc(H) > κf̂ .

Since the random edges e1, . . . , em of H are i.i.d.,

E[Z] =
∑
ψ∈Ψ

P[disc(ψ) 6 κf̂ ] =
∑
ψ∈Ψ

P[|ψ(e1)| 6 κf̂ ]m. (7)

Note that ψ(e1) =
∑n

i=1 ψ(vi)1vi∈e1 , where 1vi∈e1 denotes the indicator random variable of the event
that edge e1 contains vertex vi, so ψ(e1) is distributed as Sa,p in Section 2 (with ai = ψ(vi) and
pi = P[vi ∈ e1]). Hence, by applying (5) in Lemma 2.4 (with ε = 0, ζ = p and [L,R] = [−κf̂ , κf̂ ])
to each one of the 2n terms of the last sum in (7), it follows that

E[Z] 6 2n

(
cuni + 2κf̂/

√
2π√

p(1− p)n

)m
6 2n

(
κf̂(cuni +

√
2/π)√

p(1− p)n

)m
,

where we also used that κf̂ > 1. Let us consider first the case that m = O(n). Then, from the
definition of f̂ and choosing κ so that κ < 1/(cuni +

√
2/π),

E[Z] 6
(
κ(cuni +

√
2/π)

)m
= o(1).

Now suppose that m� n. In this case, we bound the factor P[|ψ(e1)| 6 κf̂ ] on the right-hand side
of (7) using the tighter inequality (4) in Lemma 2.4 instead of (5). Then,

E[Z] 6 2n

 cuni√
p(1− p)n

+

(
1− exp

(
− (2κf̂)2

2πp(1− p)n

))1/2
m

.

Recall that here we have f̂ =
√
p(1− p)n log γ, since m � n. Then, setting C := 2κ2/π and

choosing κ so that C < 1/2, we may simplify:

E[Z] 6 2n

(
cuni√

p(1− p)n
+
(

1− γ−2κ2/π
)1/2

)m

=
(

2n/m
)m( cuni√

p(1− p)n
+
(
1− γ−C

)1/2)m
.

Note that when 0 < n/m < 1, we have 1 < 2n/m < 1 + n/m. Again using that m � n, for n
sufficiently large we have 0 < n/m < 1, so 2n/m = 1 + O(n/m). Considering also that cuni√

p(1−p)n
=

O(1/
√
pn), we obtain

E[Z] = (1 +O (n/m))m
(
O(1/

√
pn) +

(
1− γ−C

)1/2)m
.

Now, recall that γ = min{pn,m/n}, so 1/
√
pn = o(γ−C), n/m = o(γ−C), and m/γC →∞. Then

E[Z] =

(
1− 1

2
γ−C(1 + o(1))

)m
= exp

(
−m

2
γ−C(1 + o(1))

)
= o(1).

In either case, E[Z] = o(1), and therefore w.h.p. disc(H) > κf̂ . �
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3.2. The Edge-Dependent Model. In this section, we derive a lower bound on the discrepancy
of a hypergraph generated from the edge-dependent model and prove Theorem 1.2. In view of our
previous results for the edge-independent model, one natural approach is to compare both models
H(n,m, d) and H(n,m, p) via a coupling procedure. For instance, let m = n and d � log n for
simplicity, and suppose that we can generate (H1, H2) with H1 ∼ H(n, n, d) and H2 ∼ H(n, n, p),
with edge sets E(H1) = {e1

1, . . . , e
1
n} and E(H2) = {e2

1, . . . , e
2
n}, in such a way that w.h.p. for every

i = 1, . . . , n we have |e1
i∆e

2
i | 6 η, for some suitable η = η(n) (where ∆ denotes the symmetric

difference). In particular, this implies that w.h.p. | disc(H1) − disc(H2)| 6 η, and thus disc(H1) =

Ω(
√
d + η) by Theorem 1.1. Unfortunately, since the standard deviation of the size of an edge is

Θ(
√
d) in either model, most naïve attempts to build such a coupling require η �

√
d, which is too

large for our purposes. (In fact, it is not hard to build such a coupling with any η �
√
d log n.)

As a result, while it is conceivable that a more delicate coupling argument works, we abandon this
approach. Instead, we handle the dependencies of the edges of H2 by applying a careful conditioning
argument, while generalizing how we apply Lemma 2.4.

As in the edge-independent model, we first prove a constant lower bound on the discrepancy of
H ∼ H(n,m, d).

Proposition 3.2. Suppose H ∼ H(n,m, d) with m→∞, dn/m→∞ and d/m bounded away from
1 as n→∞. Then w.h.p. disc(H) > 1.

Proof. By hypothesis, p = d/m 6 1 − ν for some sufficiently small constant ν > 0. Our goal is to
show that w.h.p. there is some edge in H containing an odd number of vertices, so disc(H) > 1.
As in the proof of Proposition 3.1, the probability that an edge ei has an odd number of vertices is
1/2 + o(1) (see (6)). Therefore, the expected number W of edges with an odd number of vertices is
(1 + o(1))m/2. Similarly, we have the following:

Claim 1. The probability that two different edges (say, e1 and e2) have an odd number of vertices
is 1/4 + o(1).

In view of this claim, and summing over all m(m − 1) ordered pairs of different edges, we get
that EW (W − 1) ∼ m2/4. This implies that VarW = EW (W − 1) + EW − (EW )2 = o((EW )2)
and, by a standard application of Chebyshev’s inequality, we conclude that w.h.p. W ∼ m/2→∞.
This proves the proposition under the assumption that Claim 1 holds.

To prove Claim 1, we first consider for each i ∈ [n] the random vector (1vi∈e1 ,1vi∈e2), where 1vi∈ej
denotes the indicator random variable of the event that edge ej contains vertex vi. In particular,
the bivariate probability generating function of (1vi∈e1 ,1vi∈e2) is

fi(x, y) =
d(d− 1)

m(m− 1)
xy +

d(m− d)

m(m− 1)
(x+ y) +

(m− d)(m− d− 1)

m(m− 1)
,

where for each s, t ∈ {0, 1} the coefficient

[xsyt]fi(x, y)

denotes the probability that 1vi∈e1 = s and 1vi∈e2 = t. For instance, [xy]fi(x, y) is simply the
probability that vi ∈ e1 and vi ∈ e2 which equals d(d−1)

m(m−1) , etc. Now we define the random vector

D = (D1, D2) =
n∑
i=1

(1vi∈e1 ,1vi∈e2),

where Dj is the number of vertices in edge ej , for j = 1, 2. Note that the terms in the sum above
are independent, since they correspond to the contributions from different vertices. Therefore, the
bivariate probability generating function f(x, y) of D satisfies

f(x, y) =
n∏
i=1

fi(x, y) =

(
d(d− 1)

m(m− 1)
xy +

d(m− d)

m(m− 1)
(x+ y) +

(m− d)(m− d− 1)

m(m− 1)

)n
.
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By definition of bivariate probability generating function, for 0 6 i, j 6 n, the coefficient

cij := [xiyj ]f(x, y)

gives the probability that edge e1 has i ones and edge e2 has j ones. Hence,

f(1, 1)− f(−1, 1)− f(1,−1) + f(−1,−1) =
∑
i,j>0

(1− (−1)i − (−1)j + (−1)i+j)cij = 4
∑
i,j odd

cij ,

so the probability that both edges have an odd number of vertices is

f(1, 1)− f(−1, 1)− f(1,−1) + f(−1,−1)

4
=

1− 2
(
1− 2d

m

)n
+
(

1− 4 d(m−d)
m(m−1)

)n
4

= 1/4 + o(1).

The first step in the above equation follows from direct substitution and straightforward although
tedious calculations. In the second step, we used the facts that d/m 6 1 − ν and dn/m → ∞ in
order to bound the error term∣∣∣∣2(1− 2d

m

)n
+

(
1− 4

d(m− d)

m(m− 1)

)n∣∣∣∣ 6 2 max{(1− 2ν)n, e−2dn/m}+ e−4νdn/m = o(1).

This proves Claim 1 and finishes the proof of the proposition. �

Remark 6. It is conceivable that in the proof of the proposition above one could obtain an up-
per bound on P[W = 0] that is exponentially small in m, in the same spirit as in the proof of
Proposition 3.1. However, this would require some additional work due to the fact that the edges
of H ∼ H(n,m, d) are not formed independently.

Proposition 3.2 trivially implies Theorem 1.2 in the regime in which 2−n/m
√
dn/m = O(1).

To prove the remaining cases, we will generalize the ideas we used in the proof of Theorem 1.1.
However, the dependencies among the edges make the argument much more delicate.

Proof of Theorem 1.2. Suppose that H = (V,E) is generated from H(n,m, d) with m = m(n) and
d = d(n) satisfying dn/m → ∞ and d → ∞ (as n → ∞) and with p = d/m 6 c for some constant
0 < c < 1. For short, we use H to denote the sample space of the distribution, i.e. the set of all
possible outcomes of H. Fix a constant 0 6 ε < min{1, 1/c− 1}, and define

f̂ = f̂(n) :=

{
2−n/m

√
pn(1− ε)(1− c(1 + ε)) = Θ(2−n/m

√
dn/m) if m = O(n),√

pn(log γ)(1− ε)(1− c(1 + ε)) = Θ(
√
pn log γ) if m� n,

where γ = min{pn,m/n}. Let κ > 0 be a sufficiently small constant. To prove Theorem 1.2, it
suffices to show that w.h.p. disc(H) > max{κf̂ , 1}. Note that this is trivially true when f̂ 6 1/κ,
in view of Proposition 3.2. So we will assume that f̂ > 1/κ, and show that w.h.p. disc(H) > κf̂ .
Note that this assumption ensures that 2−n/m

√
dn/m = Ω(1), and so after taking logarithms, we

get that n = O(m log d). Thus, we may assume that there are not too many more vertices than
edges.

Let Z be the number of colourings ψ : V → {−1, 1} with discrepancy disc(ψ) 6 κf̂ . We would like
to prove an analogue of (7) in order to bound EZ, but unfortunately the random edges e1, . . . , em
of H are no longer i.i.d. In order to overcome this obstacle, we introduce some random variables
that will play an essential role in the analysis of Z. For each j = 1, . . . ,m and k = 1, . . . , n, let
Aj,k := 1[vk∈ej ] be the {0, 1} value of the (j, k) entry of the incidence matrix A of H, and let
Aj = (Aj,1, . . . , Aj,n) denote the j-th row of A. Moreover, for each k = 1, . . . , n, we define

B0,k := d and Bi,k := d−
i∑

j=1

Aj,k for i = 1, . . . ,m. (8)
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In other words, Bi,k counts the number of ones that appear in the k-th column of A below the i-th
row (recall that each column of A has exactly d ones). Note that each Bi,k can be expressed as a
function of the first i rows of A, and moreover the distribution of Ai+1,k conditional on the outcome
of A1,k, . . . , Ai,k can be described solely in terms of Bi,k. More formally, for each i = 1, . . . ,m, let
Fi be the sigma algebra generated by A1, . . . ,Ai, and let F0 := {∅,H} denote the trivial sigma
algebra. Then, for each i = 0, . . . ,m and k = 1, . . . , n, the random variable Bi,k is measurable with
respect to Fi, and (for i < m)

Pi,k := P[Ai+1,k = 1 | Fi] =
Bi,k
m− i

.

Intuitively speaking, we would like that the above conditional probabilities remain close to p (on
average) as we reveal new rows ofA, at least for a large number of rows. However, this is not possible
for certain parameter ranges, such as when d is small and concentration guarantees break down.
For instance, if n = m and d = o(log n), then w.h.p. there will exist a column j with Pj,n/2 > 2p.
Fortunately, there is a less restrictive event we can impose which suffices for our application of
Lemma 2.4. For each i = 0, . . . ,m− 1, we define Qi to be the event that for every 0 6 j 6 i

n∑
k=1

Pj,k > (1− ε)pn and Pj,k 6 (1 + ε)c for k = 1, . . . , n.

Here (1+ε)c < 1 from our choice of ε, and so the second condition of Qi imposes that the conditional
probabilities are bounded away from 1. Observe thatH = Q0 ⊇ · · · ⊇ Qm−1 is a decreasing sequence
of events, and each Qi is Fi-measurable by construction. Let α := max{n/(n+m), 1/2}. We need
the following technical result, which we prove in Section 3.3.

Proposition 3.3. Under the assumptions in the proof of Theorem 1.2, event Qbαmc holds w.h.p.

Now let Ψ be the set of all colourings ψ : V → {−1, 1}, and pick an arbitrary ψ ∈ Ψ. For
each i = 1, . . . ,m, let Rψi denote the event that |ψ(ei)| 6 κf̂ , and let Rψ6i :=

⋂i
j=1R

ψ
j . (By

convention, Rψ60 = H.) Clearly, Rψi and Rψ6i are Fi-measurable. Note that, conditional upon
any outcome of A1, . . . ,Ai−1 satisfying Qi−1, the random variable ψ(ei) is distributed as Sa,p in
Section 2 (with ak = ψ(vk) and pk = P[vk ∈ ei]) and it satisfies the conditions of Lemma 2.4 (with
ζ = (1 + ε)c < 1 and [L,R] = [−κf̂ , κf̂ ]). Hence, we can use that lemma to bound the conditional
probability of Rψi . We first consider the sparse regime of m = O(n). Recall that, in this regime,
f̂ = 2−n/m

√
pn(1− ε)(1− c(1 + ε)). By Lemma 2.4, choosing κ so that κ < 1/

(
3(cuni +

√
2/π)

)
and since κf̂ > 1,

P[Rψi | Fi−1]1[Qi−1] 6
cuni + 2κf̂/

√
2π√

(1− ζ)(1− ε)pn
6

κf̂(cuni +
√

2/π)√
(1− ζ)(1− ε)pn

< 2−n/m/3. (9)

In particular, since Rψ6i−1 ∩Qi−1 is Fi−1-measurable and is contained in Qi−1,

P[Rψ1 ] 6 2−n/m/3 and P[Rψi | R
ψ
6i−1 ∩Qi−1] 6 2−n/m/3 for i = 2, . . . ,m.

Thus, for each i = 2, . . . ,m,

P[Rψ6i ∩Qi−1] = P[Rψi | R
ψ
6i−1 ∩Qi−1] · P[Rψ6i−1 ∩Qi−1] 6

(
2−n/m/3

)
P[Rψ6i−1 ∩Qi−2],

and inductively

P[Rψ6i ∩Qi−1] 6
(

2−n/m/3
)i
.
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Let t := dαme. Next, we will bound disc(H) from below based on the discrepancies of the first t
rows of A when Qt−1 holds. First note that, since t > nm/(n+m),

P[Rψ6t ∩Qt−1] 6
(

2−n/m/3
)t
6
(

2−n/m/3
)nm/(n+m)

= 2−n(2/3)nm/(n+m) = o(2−n), (10)

and then, by applying Markov’s inequality to the random variable Z1Qt−1 ,

P[disc(H) 6 κf̂ and Qt−1] 6 E[Z1Qt−1 ] =
∑
ψ∈Ψ

P[Rψ6m ∩Qt−1] 6
∑
ψ∈Ψ

P[Rψ6t ∩Qt−1] = o(1). (11)

Next, we consider the dense regime ofm� n. In that case, we obtain an analogue of (9) by using the
tighter inequality (4) in Lemma 2.4 instead of (5). Here, we have f̂ =

√
pn log γ(1− ε)(1− c(1 + ε)).

With ζ = (1 + ε)c < 1 and choosing the constant κ to satisfy C := 2κ2/π < 1/2, we get

P[Rψi | Fi−1]1[Qi−1] 6
cuni√

(1− ζ)(1− ε)pn
+

(
1− exp

(
− (2κf̂)2

2π(1− ζ)(1− ε)pn

))1/2

= O(1/
√
pn) +

(
1− γ−2κ2/π

)1/2
= 1−Θ

(
γ−C

)
,

where we used the fact that 1/
√
pn = o(γ−C). Reasoning as before, we obtain the following analogue

of (10):

P[Rψ6t ∩Qt−1] 6
(
1−Θ

(
γ−C

))t
6
(
1−Θ

(
γ−C

))m/2
= e−nΘ(γ−Cm/n) = o(2−n),

where we used the facts that t > m/2 and n/m = o(γ−C). As a result, our bound in (11) is also
valid when m� n as well. Then, in either regime (m = O(n) or m� n),

P[disc(H) 6 κf̂ ] 6 P[disc(H) 6 κf̂ and Qt−1] + P[¬Qt−1] = o(1), (12)

by (11), Proposition 3.3 and the fact Qdαme−1 ⊇ Qbαmc. This shows that w.h.p. disc(H) > κf̂ , and
concludes the proof of Theorem 1.2. �

3.3. Proof of Proposition 3.3. In this section, we prove Proposition 3.3. For any m ∈ N, let
[m] := {1, 2, . . . ,m} and [0] := ∅. Suppose that J ⊆ [m] is a fixed subset of size 0 6 j 6 m. If
S ⊆ [m] is a random subset of size d, then the distribution of the random variable |S ∩ J | is said to
be hypergeometric with parameters m, d and j. We denote this distribution by Hyper(m, d, j) in
what follows. Now, Hyper(m, d, j) is at least as concentrated about its expectation as the binomial
distribution, Bin(d, j/m) (see Chapter 21 in [15] for details). As such, standard Chernoff bounds
ensure the following:

Theorem 3.4. Suppose that X ∼ Hyper(m, d, j), and µ := E[X] = dj/m. In this case, for every
0 < λ < 1,

P(|X − µ| > λµ) 6 2 exp

(
−λ2µ

3

)
.

Let A be the adjacency matrix of H ∼ H(n,m, d), which has exactly d ones in each column
at random positions. Let p = d/m. Recall that, for each i = 0, . . . ,m and k = 1, . . . , n, the
random variable Bi,k counts the number of ones in the k-th column and below the i-th row of A
(cf. (8)). Also recall Pi,k := Bi,k/(m− i) (for i < m). Clearly, Bi,k ∼ Hyper(m, d,m− i), so we may
apply Theorem 3.4 to control the value of Bi,k, and thus of Pi,k. Let α := max{n/(n + m), 1/2}
and t := dαme. For a fixed column k, our goal is to show that w.h.p. Bi,k remains “close” to
E[Bi,k] = d(m− i)/m for all i = 1, . . . , t. By combining the error term in Theorem 3.4 with a naïve
union bound, we can bound the probability of failure by something of the order of m exp(Θ(−d)),
which does not tend to 0 unless d = Ω(logm). To overcome this, we need a more subtle argument
in which we take the union bound over a smaller set of indices i and take into account that Bi,k
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does not change too much between two consecutive values of i. This is made more precise in the
following claim:

Proposition 3.5. Assume 0 < α, λ, ξ < 1 with ξ > 1/m and α+ ξ < 1. Fix 1 6 k 6 n. Then, with
probability at least

1− 8ξ−1 exp

(
−dλ2(1− α− ξ)2

3

)
,

it holds that, for all i = 0, . . . , bαmc,

(1− λ)

(
1 +

ξ

1− α− ξ

)−1

p 6 Pi,k 6 (1 + λ)

(
1 +

ξ

1− α− ξ

)
p. (13)

Proof. As the columns of A are identically distributed, we may assume that k = 1 in what
follows. We thus drop the index k from the notation of Ai,k, Bi,k, Pi,k for simplicity. Recall
Bi ∼ Hyper(m, d,m− i) with EBi = p(m− i) for each i = 0, . . . ,m.

Our goal is to show that B0, . . . , Bbαmc (and thus also P0, . . . , Pbαmc) are concentrated around
their mean. The key idea behind the argument is to first obtain concentration for a smaller subset of
random variables, and then extend that to the rest. Here is a high-level description of our strategy
in simple terms. First, we will partition the set of indices [bαmc] into approximately α/ξ intervals of
length bξmc. Then, we will prove that for every i at the upper end of an interval Bi is concentrated,
by applying Theorem 3.4 and taking the union bound over all intervals. Finally, we will show that
Bi cannot change too much for i within each individual interval. The advantage of this approach is
that the number of terms in the union bound is around α/ξ, which can be made much smaller than
αm by taking ξ sufficiently larger than 1/m.

Let r := d(m − 1)/bξmce, which satisfies 1 6 r 6 m − 1 by assumption. Our first goal is to
partition the set [m − 1] into r intervals, each of size at most ξm. For each q = 0, . . . , r − 1 let
Iq := [qbξmc], and let Ir := [m − 1]. Then, setting Ĩq := Iq \ Iq−1 for q = 1, . . . , r, gives us the
desired partition Ĩ1, . . . , Ĩr of [m− 1]. Now, let r0 := dbαmc/bξmce. Since r0bξmc > bαmc, the set
[bαmc] is contained in

⋃r0
q=1 Ĩq. We claim that r0 6 r − 1. Clearly, r0 6 r since bαmc 6 m − 1.

If r0 = r, then (m − 1) − bαmc < bξmc, which implies bαmc + bξmc > m by integrality. This
contradicts the fact that bαmc+ bξmc 6 (α+ ξ)m < m. As a result, r0 6 r − 1, as claimed.

For each 0 6 q 6 r − 1, define Yq := Bqbξmc and let Yr := Bm−1. In other words, each Yq counts
the number of ones in the k-th column of A below all the rows indexed by Iq. We will prove that
the variables Y0, . . . , Yr0 are concentrated around their mean, and from that derive a concentration
result for B0, . . . , Bbαmc. Observe that Yr must be defined slightly differently, due to divisibility
issues. Fortunately, our argument will only require the analysis of Y0, . . . , Yr0 , where r0 6 r − 1, so
this fact will cause no trouble. For q = 0, . . . , r − 1,

EYq = p(m− |Iq|) = p(m− qbξmc),

and therefore, for every q = 1, . . . , r0,

EYq−1

EYq
= 1 +

bξmc
m− qbξmc

6 1 +
bξmc

m− bαmc − bξmc
6 1 +

ξ

1− α− ξ
, (14)

where we also used the fact that r0bξmc 6 bαmc+ bξmc. Now, let E be the event that

|Yq − EYq| 6 λEYq for all q = 0, . . . , r0.

A direct application of Theorem 3.4 yields

P(¬E) 6
r0∑
q=0

2 exp

(
−λ2p2(m− qbξmc)2

3d

)
6 2(r0 + 1) exp

(
−λ2p2(m− r0bξmc)2

3d

)
.
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Using the fact that r0bξmc 6 (α + ξ)m and the rough bound r0 + 1 6 αm
ξm/2 + 2 6 4

ξ , we conclude
that

P(¬E) 6 (8/ξ) exp

(
−dλ2(1− α− ξ)2

3

)
. (15)

Finally, we turn our attention to B1, . . . , Bbαmc. For each i ∈ [bαmc], we pick q ∈ [r0] such that
i ∈ Ĩq. Then, by monotonicity,

Yq 6 Bi 6 Yq−1 and EYq 6 EBi 6 EYq−1.

Combining this with (14) yields

EYq−1 6

(
1 +

ξ

1− α− ξ

)
EBi and EYq >

(
1 +

ξ

1− α− ξ

)−1

EBi.

As a result, event E implies that for every 1 6 i 6 bαmc,
(1− λ)EYq 6 Yq 6 Bi 6 Yq−1 6 (1 + λ)EYq−1,

and hence

(1− λ)

(
1 +

ξ

1− α− ξ

)−1

EBi 6 Bi 6 (1 + λ)

(
1 +

ξ

1− α− ξ

)
EBi. (16)

(Note that the equation above is also valid for i = 0, since B0 = d = EB0.) Dividing (16) by m− i,
we conclude that event E implies that, for every 0 6 i 6 bαmc,

(1− λ)

(
1 +

ξ

1− α− ξ

)−1

p 6 Pi 6 (1 + λ)

(
1 +

ξ

1− α− ξ

)
p.

Our bound on P(¬E) in (15) completes the proof of the proposition. �

Corollary 3.6. Suppose m > d → ∞ and n = O(m log d) as n → ∞. Set p = d/m and α =
max{n/(n+m), 1/2}. Given any fixed constant 0 < ε < 1 and any 1 6 k 6 n, the following holds
with probability at least 1− exp

(
−Ω(d/ log3 d)

)
. For every i = 0, . . . , bαmc,

|Pi,k − p| 6 εp. (17)

Proof. Since the probability bound in the statement is asymptotic as n → ∞, we will implicitly
assume throughout the proof that n is sufficiently large for all the inequalities therein to be valid.
First, define λ := ξ := 1/ log3/2 d. Clearly, ξ > 1/d > 1/m. Observe that, since n = O(m log d), we
have

1− α = min{m/(n+m), 1/2} = Ω(1/ log d). (18)
In particular α+ ξ < 1, and thus all the assumptions in Proposition 3.5 are satisfied. Moreover,

ξ

1− α− ξ
= O

(
1/ log3/2 d

1/ log d

)
= O(log−1/2 d).

As a result, we can relax the inequalities in (13) to

Pi,k =
(

1 +O(log−3/2 d)
)(

1 +O(log−1/2 d)
)
p = (1 + o(1))p,

which implies that |Pi,k − p| 6 εp (eventually for n sufficiently large). In view of Proposition 3.5,
this fails for some i = 0, . . . , bαmc with probability at most

8ξ−1 exp

(
−dλ2(1− α− ξ)2

3

)
6 8(log3/2 d) exp

(
−d(1/2− log−3/2 d)2

3 log3 d

)
= exp

(
−Ω(d/ log3 d)

)
.

This finishes the proof of the corollary. �
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Now we are ready to prove Proposition 3.3, which we restate below in a more explicit form for
convenience.

Proposition 3.7. Let 0 < ε, c < 1 be fixed constants with (1 + ε)c < 1. Assume that d → ∞,
dn/m → ∞ and n = O(m log d) as n → ∞, and suppose that p = d/m 6 c. Let α = max{n/(n +
m), 1/2}. Then w.h.p., for every i = 0, . . . , bαmc,

n∑
k=1

Pi,k > (1− ε)pn, (19)

and
Pi,k 6 (1 + ε)c for k = 1, . . . , n. (20)

Proof. For k = 1, . . . , n, we say that column k of A is controllable if, for every i = 0, . . . , bαmc, it
holds that

|Pi,k − p| 6 ε0p,

where ε0 := ε/2. Let U ⊆ [n] denote the set of indices of the uncontrollable columns. Then, by
Corollary 3.6 (with ε replaced by ε0),

E|U | 6 n exp
(
−Ω(d/ log3 d)

)
= o(n).

Hence, we can apply Markov’s inequality to ensure that |U |/n 6 ε0 w.h.p. On the other hand, by
applying the trivial lower bound to Pi,k for each controllable column k ∈ [n],

n∑
k=1

Pi,k > (n− |U |)(1− ε0)p > (1− ε0)2pn > (1− 2ε0)pn,

w.h.p., thereby proving (19) (as 2ε0 = ε).
In order to verify that (20) holds, we first consider the regime in which d 6 log2 n. Observe then

that deterministically

Pi,k 6
d

m− i
6

d

(1− α)m
,

for each i = 1, . . . , bαmc and k = 1, . . . , n. In particular, since 1− α = Ω(log−1 d) (in view of (18))
and n = O(m log d), it holds that

Pi,k = O(d(log2 d)/n) = o(1).

Thus, (20) holds in this regime, as c(1+ε) > 0 is a fixed constant. On the other hand, if d > log2 n,
we can apply Corollary 3.6 again, which ensures that with probability at least

1− n exp
(
−Ω(d/ log3 d)

)
= 1− o(1)

we have
Pi,k 6 (1 + ε)p 6 (1 + ε)c

for all i = 0, . . . , bαmc and k = 1, . . . , n. The proof is therefore complete. �

4. Upper Bounding Discrepancy—Proof of Theorem 1.3

The main tool we make use of is the algorithmic partial colouring lemma [19], as done in [6,
22, 23]. For convenience, we restate this lemma in the relevant hypergraph terminology, where we
define a fractional colouring to be a relaxation of a (hypergraph) colouring, whose values are
allowed to lie in the interval [−1, 1]:
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Lemma 4.1 (Partial Colouring Lemma [19]). Suppose that H = (V,E) is a hypergraph with m
edges and n vertices which are coloured by some fractional colouring ρ : V → [−1, 1]. Moreover,
assume that δ > 0 and (λe)e∈E are non-negative values such that∑

e∈E
exp(−λ2

e/16) 6
n

16
. (21)

Under these assumptions, there exists some fractional colouring ψ : V → [−1, 1] for which
(1) |ψ(e)− ρ(e)| 6 λe|e|1/2 for all e ∈ E, and
(2) |ψ(v)| > 1− δ for at least n/2 vertices of V .

Moreover, ψ can be computed by a randomized algorithm in expected time

O((n+m)3δ−2 log(mn/δ)).

Remark 7. As previously mentioned, Levy, Ramadas, and Rothvoss [18] showed that the algorith-
mic guarantee of Lemma 4.1 can be achieved using a deterministic algorithm (albeit with a worse
run-time).

In what follows, it will be convenient to refer to ρ as the target (fractional) colouring and
δ as the rounding parameter. We make use of Lemma 4.1 in the same way as in [6, 19, 22,
23]. In fact, we analyze the same two-phase algorithm considered by both Bansal and Meka [6]
and Potukuchi [22, 23], though we must tune the relevant asymptotics carefully in order to achieve
the bound claimed in Theorem 1.3. In particular, we shorten phase one and change the target
discrepancy in each application of Lemma 4.1. These modifications allow us to derive more precise
asymptotics in the studied range of parameters.

Let us suppose that H = (V,E) is a hypergraph drawn from H(n,m, d) or H(n,m, p), where
p = d/m. From now on, we assume that n is a power of 2 for convenience. This follows w.l.o.g.
as we can always add extra vertices to V which do not lie in any of the edges of G. Given the
lower bounds of Theorems 1.1 and 1.2, ideally we would like to compute an output colouring,
φ : V → {−1, 1} with matching discrepancy. However, without finer proof techniques, this does
not seem fully attainable for the full parameter range of m � n. Let us fix µ := dn/m. We recall
the definition of β = β(n) as given in the statement of Theorem 1.3: For all n sufficiently large,
β(n) > 1 and

β(n)µ > log(m/n) (logµ+ 2)5 . (22)
Let f̂ :=

√
µ log(m/n)β be the target upper bound on the discrepancy that we are aiming to

prove. Our argument is based on analyzing the Iterated-Colouring-Algorithm, which we
now describe. Fix t1 := lgµ, 0 6 i 6 t1, and let H0 := H, and δ := 1/n. For convenience, we refer
to the below procedure as round i. We define f̂i := f̂(i+ 2)−2 as the desired discrepancy bound to
be attained in round i.

(1) Remove all edges of Hi = (Vi, Ei) of size less than or equal to f̂ .
(2) Update λe to be f̂i/|e|1/2 for each e ∈ Ei. Update the target colouring, which we denote

by ρi, to be the previously computed colouring ψi−1 : Vi−1 → [−1, 1] restricted to Vi (here
ψ−1 is the identically zero function by convention).

(3) If
∑

e∈Ei
exp(−λ2

e/16) 6 |Vi|/16, then apply Lemma 4.1 toHi with the above values, yielding
the fractional colouring ψi : Vi → [−1,−1]. Otherwise, abort the round and declare an error.

(4) Assuming an error did not occur, compute Si ⊆ Vi, such that |ψi(v)| > 1−1/n for all v ∈ Si,
where |Si| := |Vi|/2. Afterwards, construct Hi+1 = (Vi+1, Ei+1) by restricting the edges of
Ei to Vi+1, where Vi+1 := Vi \ Si.

We refer to the rounds i = 0, . . . , t1 as phase one of the algorithm’s execution. Note that we refer
to the vertices of Si as inactive after round i, as the value φ assigns to them will not change at
any point onwards. We refer to the remaining vertices as being active. Observe then the following
proposition:
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Proposition 4.2. For each 0 6 i 6 t1 and e ∈ Ei, it holds that

|ψi(e)− ρi(e)| 6
f̂

(i+ 2)2
.

Assuming that none of the rounds yielded an error, there are exactly 2−t1n = nµ−1 = m/d active
vertices at the end of phase one, as t1 = lgµ. Heuristically, this means that we expect Ht1+1 to
have edges of roughly constant size since p = d/m. As such, we can easily complete the colouring φ
by executing the phase two procedure for rounds t1 + 1 6 i 6 t2, where t2 := lg(10n/f̂) + 1. The
phase two procedure is identical to that of phase one, with the exception that in step 2, we update
λe to be 0 (rather than f̂i/|e|1/2) for each e ∈ Ei. Analogously, we observe the following.

Proposition 4.3. For each t1 + 1 6 i 6 t2 and e ∈ Ei, it holds that

|ψi(e)− ρi(e)| = 0.

Assuming that none of the rounds yielded an error, there are exactly 2−t2n = nf̂/20n = f̂/20
active vertices at the end of phase two. In order to complete the construction of φ, we conclude
with a post-processing phase. That is, we arbitrarily assign −1 or 1 to any of the vertices which
remain active at the end of phase two. Finally, we round each remaining fractional value assigned
by φ to the nearest integer within {−1, 1}.

Let us assume that the above procedure succeeds in its execution on H; that is, it does not abort
during any iteration in either phase one or two. In this case, we conclude the proof by showing the
next lemma.

Lemma 4.4. If neither phase one nor phase two fails then Theorem 1.3 holds.

Proof. For each 0 6 i 6 t2, let us formally extend ψi to all of V . That is, define ψi(v) := 0 for
each v ∈ V \ Vi, and keep ψi unchanged on Vi. Moreover, do the same for the target colouring ρi.
Observe then that once phase two ends, φ can be expressed as a sum of differences involving the
partial colourings (ψi)

t2
i=0 and (ρi)

t2−1
i=0 Specifically,

φ(v) =

t2∑
i=0

(ψi(v)− ρi(v)).

Let te be the time when edge e becomes smaller than f̂ or te = t2 if it never happens. After applying
Propositions 4.2 and 4.3 we get that

|φ(e)| 6 f̂ +

te∑
i=0

|ψi(e)− ρi(e)|

6 f̂ +

t1∑
i=0

|ψi(e)− ρi(e)|+
t2∑

i=t1+1

|ψi(e)− ρi(e)|

6 f̂ +
∞∑
i=0

f̂

(i+ 2)2
= O(f̂).

The post-processing phase cannot increase the discrepancy that φ attains on any edge of E by
more than f̂ for the remaining active vertices; as we already observed, there are at most f̂/20 of
them. The rounding of inactive vertices increases the discrepancy by at most 1. �

Bounding the Failure Probability. First, we recall the following lemma proven in [6] by Bansal and
Meka:
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Lemma 4.5 (Lemma 6 in [6]). Suppose that H is generated from H(n,m, d) and M is a fixed r× `
sub-matrix of the m× ` incidence matrix A of H. If s > 10d`/m, and B(r, `, s) corresponds to the
event in which each row of M has at least s 1’s, then

P[B(r, `, s)] 6 exp

(
−rs log((sm)/(d`))

2

)
.

While this lemma is stated for the case when H is generated from H(n,m, d), the upper bound
on P[B(r, `, s)] is proven by instead bounding the probability of the analogous event when H is
generated from H(n,m, p) for p = d/m. As such, this lemma extends to the edge independent
model. We now restate it in a form which will be more convenient for our purposes.

Lemma 4.6. Suppose that H is generated from H(n,m, d) or H(n,m, p) for p = d/m, whose
incidence matrix we denote by A. If s > 10d`/m, then define Q(r, `, s) as the event in which there
exists an r × ` sub-matrix of A in which each row has at least s 1’s. In this case,

P[Q(r, `, s)] 6

(
m

r

)(
n

`

)
exp

(
−rs log((sm)/(d`))

2

)
.

Using this lemma, we can ensure that w.h.p. Iterated-Colouring-Algorithm will not abort
during phase one (Proposition 4.7) or two (Proposition 4.8) and thus conclude the proof of Theo-
rem 1.3.

Proposition 4.7. If Iterated-Colouring-Algorithm inputs a hypergraph drawn from H(n,m, d)
or H(n,m, p) where p = d/m, then w.h.p. it does not abort during phase one, provided we assume
that µ = dn/m→∞ and m� n.

Proof. Given 0 6 i 6 t1, we say that round i is good, provided there are at most ni/17 rows of Hi

whose size is greater than si := βµ/16(i + 2)5, where β satisfies (22). Otherwise, we say that the
round is bad. Recall that t1 = lgµ.

Now, if round i is good, then we claim that Iterated-Colouring-Algorithm does not abort
in iteration i. To see this, it suffices to show that for n sufficiently large∑

e∈Ei

exp
(
−λ2

e/16
)
6 ni/16,

where ni := |Vi| = n/2i, f̂i := f̂(i+ 2)−2 and λe := f̂i/|e|1/2 for e ∈ Ei. Observe now that since the
round is good, we get that∑

e∈Ei

exp
(
−λ2

e/16
)

=
∑
e∈Ei:
|e|6si

exp
(
−λ2

e/16
)

+
∑
e∈Ei:
|e|>si

exp
(
−λ2

e/16
)

6 m exp

(
− f̂2

i

16si

)
+ ni/17.

On the other hand, since f̂i :=
√
µ log(m/n)β/(i+ 2)2,

m exp
(
−f̂2

i /16si

)
= m exp(− log(m/n)(i+ 2))

= m
( n
m

)i+2

= n
( n
m

)i+1
= o(ni)

where the last line follows since (n/m)i+1 � 2−i, as n� m. Thus,∑
e∈Ei

exp
(
−λ2

e/16
)
6 (1 + o(1))

ni
17
6
ni
16
.
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We now must show that w.h.p. all of the rounds are good. Now, observe that if some round 1 6 i 6 t1
is bad, then there exists an (ni/17)×ni sub-matrix of A, say M , in which each row of M has greater
than si 1’s. In fact, since nt1 6 ni and st1 6 si, we can take a sub-matrix of M (and thus of A) in
which each row has at least st1 1’s, and whose size is (nt1/17)×nt1 . Thus, we observe the following
claim:

(1) If a bad round occurs, then there exists a (nt1/17)×nt1 sub-matrix of A in which each row
has more than st1 1’s.

Let us define Q(nt1/17, nt1 , st1) as this latter event; namely, that there exists an (nt1/17) × nt1
sub-matrix of A in which each row has more than st1 1’s. In order to complete the proof, it suffices
to show that w.h.p. Q(nt1/17, nt1 , st1) does not occur. Recall nt1 = n/µ = m/d as the number of
active vertices drops by exactly half in each round. Using Inequality (22), it follows that

st1 =
βµ

16(t1 + 2)5
>

log m
n (logµ+ 2)5

16(lgµ+ 2)5
� 10 = 10

dn

µm
> 10

dnt1
m

.

Thus, we can apply Lemma 4.6 to ensure the following (using nt1 = m/d)

P[Q(nt1/17, nt1 , st1)] 6

(
m

nt1/17

)(
n

nt1

)
exp

(
−nt1st1

34
log

(
st1m

dnt1

))
6

(
m

nt1

)2

exp
(
−nt1st1

34
log st1

)
6

(
me

nt1

)2nt1

exp

(
−nt1st1 log st1

34

)
where the inequalities follow since m� n,

(
m
nt1

)
6 (me/nt1)nt1 . Now,(

me

nt1

)2nt1

= exp (2nt1(log(m/n) + log(ne/nt1)))

= exp (2nt1(log(m/n) + log(eµ))) ,

so

P[Q(nt1/17, nt1 , st1)] 6 exp

(
−2nt1

(
st1 log st1

68
− log(m/n)− log(eµ)

))
.

Thus, by our assumption (22) on β, we get that

st1 =
βµ

16 (lgµ+ 2)5 >
log m

n (logµ+ 2)5

16(lgµ+ 2)5
>

1

16
log(m/n),

and

st1 =
βµ

16 (lgµ+ 2)5 >
µ

16 (lgµ+ 2)5 ,

as β > 1. The proposition follows as

log (m/n) log(log (m/n)/16)

16 · 68
� log(m/n),

and
µ

68 · 16 (lgµ+ 2)5 � log (µe). �

Proposition 4.8. If Iterated-Colouring-Algorithm inputs a hypergraph drawn from H(n,m, d)
or H(n,m, p) where p = d/m, then w.h.p. it does not abort in phase two, provided µ = dn/m→∞
as n→∞ and m� n.
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Proof. Suppose that t1 + 1 6 i 6 t2 for t2 := lg(10n/f̂) + 1. Recall nt2 = n/2(10n/f̂) = f̂/20 and
that during phase two, λe = 0 for each e ∈ Ei. Thus, we get that∑

e∈Ei

exp
(
−λ2

e/16
)

= |Ei|.

On the other hand, in order for an edge of H to remain in Ei, it must have greater than f̂ vertices
which lie in Vi thanks to step (1) of the Iterated-Colouring-Algorithm. As a result, if
Iterated-Colouring-Algorithm aborts in round i, then Hi must have at least ni/16 edges of
size greater than f̂ . In particular, since nt2 6 ni, this implies that the incidence matrix A of H has
an (nt2/16) × nt2 sub-matrix in which each row has greater than f̂ 1’s. Thus, if Q(nt2/16, nt2 , f̂)
corresponds to the event in which A has an (nt2/16)×nt2 sub-matrix in which each row has greater
than f̂ 1’s, then we get the following claim:

(1) If Iterated-Colouring-Algorithm aborts in some round t1+1 6 i 6 t2, thenQ(nt2/16, nt2 , f̂)
must occur.

As a result, in order to show that w.h.p. Iterated-Colouring-Algorithm does not abort in
any round it suffices to prove that Q(nt2/16, nt2 , f̂) does not occur w.h.p. Now, it follows that

f̂ > 10
df̂

20m
= 10

dnt2
m

,

as d 6 m. Thus, we can apply Lemma 4.6 to ensure that

P[Q(nt2/16, nt2 , f̂)] 6

(
m

nt2/16

)(
n

nt2

)
exp

(
−nt2 f̂

32
log

(
f̂m

dnt2

))

6

(
m

nt2/16

)(
n

nt2

)
exp

(
−nt2 f̂

32
log

(
20m

d

))
,

and so P[Q(nt2/16, nt2 , f̂)] is upper bounded by

exp

(
−2nt2

(
f̂

64
− log(m/n)− log(µe)

))
, (23)

after applying the same simplifications as in Proposition 4.7. The proposition then follows by
assumption (22) on β, as

f̂/64 =
√
βµ log (m/n)/64 >

log (m/n) log5 (µ+ 2)

64
� logm/n,

and
log (m/n) log5 (µ+ 2)

64
� log (µe). �

5. Conclusion and Open Problems

We have lower bounded the discrepancy of the random hypergraph modelsH(n,m, p) andH(n,m, d)
for the full parameter range in which d→∞ and dn/m→∞ where p = d/m. In the dense regime
of m � n, we have provided asymptotically matching upper bounds, under the assumption that
d = pm > (m/n)1+ε for some constant ε > 0. These upper bounds are algorithmic, and so the
main question left open by our work is whether analogous upper bounds can be proven in the sparse
regime of n/ log n � m � n. Our lower bounds suggest that the discrepancy is Θ

(
2−n/m

√
pn
)
,

and while we believe that a second moment argument could be used to prove the existence of such
a colouring—particularly, in the edge-independent model H(n,m, p)—the partial colouring lemma
does not seem to be of much use here. This leaves open whether such a colouring can be computed
efficiently in this parameter range. If this is not possible, then ideally one could find a reduction
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to a problem which is believed to be hard on average. One candidate may be the random-lattice
problem of Ajtai [1] and Goldreich et al. [16], in which a random m by n matrix M with i.i.d.
entries from Zq is generated, and one wishes to compute a vector x ∈ {0, 1}n such that Mx = 0.
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