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Abstract

We use contention resolution schemes (CRS) to derive algorithms for the fair rationing of a
single resource when agents have stochastic demands. We aim to provide ex-ante guarantees on
the level of service provided to each agent, who may measure service in different ways (Type-I,
II, or III), calling for CRS under different feasibility constraints (rank-1 matroid or knapsack).
We are particularly interested in two-order CRS where the agents are equally likely to arrive
in a known forward order or its reverse, which is motivated by online rationing at food banks.
Indeed, for a mobile pantry driving along cities to ration food, it is equally efficient to drive
that route in reverse on half of the days, and we show that doing so significantly improves the
service guarantees that are possible, being more “fair” to the cities at the back of the route.

In particular, we derive a two-order CRS for rank-1 matroids with guarantee 1/(1+e−1/2) ≈
0.622, which we prove is tight. This improves upon the 1/2 guarantee that is best-possible under
a single order [Ala14], while achieving separation with the 1 − 1/e ≈ 0.632 guarantee that is
possible for random-order CRS [LS18]. Because CRS guarantees imply prophet inequalities, this
also beats the two-order prophet inequality with ratio (

√
5− 1)/2 ≈ 0.618 from [ADK21], which

was tight for single-threshold policies. Rank-1 matroids suffice to provide guarantees under
Type-II or III service, but Type-I service requires knapsack. Accordingly, we derive a two-order
CRS for knapsack with guarantee 1/3, improving upon the 1/(3 + e−2) ≈ 0.319 guarantee that
is best-possible under a single order [JMZ22]. To our knowledge, 1/3 provides the best-known
guarantee for knapsack CRS even in the offline setting. Finally, we provide an upper bound
of 1/(2 + e−1) ≈ 0.422 for two-order knapsack CRS, strictly smaller than the upper bound of
(1 − e−2)/2 ≈ 0.432 for random-order knapsack CRS.

1 Introduction

Rationing a limited supply is a problem as old as society itself. In some circumstances, the demands
to manifest are also uncertain, as agents are sojourners who come and go. Rationing with limited
supply can be modelled as an online decision-making problem where the resource can either be put
to good use serving present agents, or be rationed for future agents who may or may not show up.

Meanwhile, contention resolution schemes (CRS) are a modern tool for selecting a subset of
agents, often online. They provide probabilistic guarantees to each agent for being selected, and
operate under both a global budget constraint on the pool of agents selected, and local stochastic-
ity in whether each agent can be feasibly selected. Since being introduced in the seminal works of
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[CVZ14, FSZ21], CRS have seen a burgeoning literature studying different feasibility structures, ar-
rival patterns, and other variants, motivated by applications ranging from submodular optimization
to Bayesian search to online stochastic matching.

In this paper we connect the two concepts, using CRS to derive rationing policies with guarantees
on how well the demand of each agent will be served. In some sense, our approach is quite natural—
the global budget constraint in CRS captures the limited supply in rationing, while the local
stochasticity in CRS captures the uncertain demand. That being said, problem-specific nuances
arise from the different ways in demand service is measured in rationing, and our approach is able
to use CRS to consider different rationing problems in a unified manner (see Subsection 1.1). The
online rationing application also motivates a new “forward-backward” arrival pattern for CRS (see
Subsection 1.2). Going full circle, our results for forward-backward CRS under the rank-1 matroid
and knapsack feasibility structures (see Subsection 1.3) have implications beyond, improving two-
order prophet inequalities and random-order/offline knapsack CRS.

1.1 Rationing Preliminaries

Rationing problems have been studied under different service definitions and arrival patterns, with
different goals in mind. We outline the differences and explain our approach to rationing.

Definition 1 (Setup). Agents i ∈ [n] := {1, . . . , n} have random demands Di ≥ 0 drawn indepen-
dently from known distributions Fi with means µi > 0. Each agent i receives a (random) allocation
Yi ≥ 0, which must satisfy

∑n
i=1 Yi ≤ 1 due to having a limited supply of 1. If agent i has demand

d and receives allocation y, the service provided is given by si(y, d), where si can take one of the
three functional forms below. The expected service provided to an agent i is E[si(Yi,Di)].

1. The Type-I service function defines si(y, d) = 1(y ≥ d).

Assuming Yi ≤ Di, we have E[si(Yi,Di)] = Pr[Yi = Di].

2. The Type-II service function defines si(y, d) = min{y, d}/µi.

Assuming Yi ≤ Di, we have E[si(Yi,Di)] = E[Yi]/E[Di].

3. The Type-III service function defines si(y, d) = min{y, d}/d.

Assuming Yi ≤ Di, we have E[si(Yi,Di)] = E[Yi/Di].

For Type-III service, 0/0 is treated as 1, i.e. if demand is 0 then 100% service is trivially achieved.

We will always assume Yi ≤ Di, which is without loss of generality if Di is truthfully1 revealed
before Yi has to be decided. Under this assumption, different settings arise depending on whether
the Di’s are revealed all at once or one by one.

Definition 2 (Offline vs. Online). In offline rationing, (Fi)i∈[n] is known in advance, (Di)i∈[n] is
revealed at the beginning, and then the algorithm decides Yi ∈ [0,Di] for all i satisfying

∑n
i=1 Yi ≤ 1.

In online rationing, (Fi)i∈[n] is known in advance. The arrival permutation Λ, which could be
randomly drawn from a known independent distribution, is revealed2 at the beginning. Demands
Di are then revealed in order following Λ, after which Yi ∈ [0,Di] must be immediately decided,
with Yi no greater than 1 minus the total allocation to agents who arrived before i.

1There is an alternate literature that allows for demands to be misreported, which we mention in Subsection 1.5.
2This also fully reveals the identity of each arriving agent. See [EFGT23, EFT24] for some recent works that

consider unknown orders or identities.
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Past work has studied offline rationing, and online rationing when the arrival order Λ is fixed,
with different goals in mind that we outline below.

1. Optimal Algorithms for Fairness: [LIS14] consider online rationing under Type-III service,
where they maximize E[mini∈[n] Yi/Di], a Rawlsian fairness objective that aims to serve the
worst-off agent as well as possible. They use dynamic programming to characterize the
optimal algorithm for this objective, assuming independent demands.

2. Simple Algorithms with Fairness Guarantees: [MNR21] consider the same setting and ob-
jective as [LIS14], but allow for correlated demands, which makes the optimal algorithm
intractable. Instead, they show that an elegant heuristic achieves the best-possible competi-
tive ratio under worst-case correlated demands, relative to a benchmark measuring demand
scarcity. They focus on Type-III service and prove that their algorithm is also best-possible
for the objective mini∈[n] E[Yi/Di], with the minimum outside the expectation.

3. Service Feasibility Determination: [JWZ23] consider offline rationing under all three types of
service and potentially correlated demands. Instead of maximizing a fairness objective, they
determine for given targets (βi)i∈[n] whether it is possible to satisfy E[si(Yi,Di)] ≥ βi for all
i, and if so, what is the allocation algorithm. They also investigate the minimum supply
required to satisfy given targets (βi)i∈[n], in combinatorial settings.

We now state our approach to rationing using CRS, and explain how it relates to goals (1)–(3)
above. We establish the following general reduction.

Theorem 1.1. Under any combination of service functions from Definition 1, if (βi)i∈[n] lies in
a convex region (see Definition 4) which includes the vector (E[si(Yi,Di)])i∈[n] for any (online or
offline) algorithm, then an α-selectable CRS (defined in Subsection 1.2) for knapsack can be used
to define an online rationing algorithm satisfying

E[si(Yi,Di)] ≥ αβi ∀i ∈ [n]. (1.1)

If every service function si is of Type-II or Type-III, then an α-selectable CRS for rank-1 matroids
is sufficient to define an online rationing algorithm satisfying (1.1).

Our approach yields lower bounds on E[si(Yi,Di)] separately for each agent i, allowing us to
study the objective mini E[si(Yi,Di)] for general types of service, or study feasibility determination.

1. For the goal of optimal algorithms, we note that with objective mini E[si(Yi,Di)], even under
independent demands, dynamic programming is intractable3 and the approach of [LIS14]
would not work. Our contribution here is to provide an α-approximation algorithm, where
we can use our convex relaxation to compute an upper bound β on the objective achieved by
any (online or offline) rationing algorithm, and then apply (1.1) with β1 = · · · = βn = β to
establish an online algorithm with mini E[si(Yi,Di)] ≥ αβ, which is within an α-factor from
optimality for some constant α ≤ 1.

2. We are deriving simple algorithms with guarantees like in [MNR21], but able to provide
approximations relative to the optimal algorithm, which their benchmark is not guaranteed to
upper-bound (see [MNR21]). That being said, their benchmark is justified by their ability to
handle correlated demands, and they are also able to handle both objectives E[mini∈[n] Yi/Di]
and mini∈[n] E[Yi/Di].

3This is because with the minimum outside the expectation, the state is no longer captured by the minimum
of si(Yi, Di) over all agents i who have arrived so far. In fact, even the offline problem is highly non-trivial (see
[JWZ23]).
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3. Like [JWZ23], our approach applies to all three types of service and does not have a par-
ticular fairness objective in mind. We are essentially determining online service feasibility,
where (1.1) shows that if service targets (βi)i∈[n] are feasible in our relaxation, then targets
(αβi)i∈[n] are feasible using an online algorithm. However, our approach does not provide a
characterization of all feasible service vectors, the way that their approach does for the offline
problem.

We now justify our objective of mini E[si(Yi,Di)] for goals (1) and (2) above, which is sometimes
called “ex-ante” fairness. In contrast, [LIS14, MNR21] can both handle the “ex-post” fairness
E[mini Yi/Di] under Type-III service. The latter is indeed well-justified by one-time allocation
settings (e.g. ventilators during the COVID-19 pandemic), because the objective mini Yi/Di can
be empirically evaluated from one sample even if the true distributions are unknown. By contrast,
our motivation comes more from repeated allocation settings, where it is acceptable for Yi to be
small one week if it is made up for in other weeks. In fact, in classical supply chain contexts where
a distributor allocates Y t

i to vendors i with demands Dt
i over weeks t = 1, . . . , T , the fill rate is

measured by what fraction of a vendor’s overall demand is served (see e.g. [CM07, SLCB+05]), i.e.

Fill Rate of i =
Y 1
i + · · ·+ Y T

i

D1
i + · · ·+ DT

i

=
1
T (Y 1

i + · · ·+ Y T
i )

1
T (D1

i + · · ·+ DT
i )

. (1.2)

In that sense, a reasonable4 fairness objective would be mini E[Yi]/E[Di], i.e. ex-ante fairness under
Type-II service, because the numerator in (1.2) is approximating E[Yi] while the denominator is
approximating E[Di]. Meanwhile, in contexts where a supplier is allocating to manufacturers,
manufacturer i may only produce if their ordered stock Di if met in entirety, in which case one
should consider Type-I service Pr[Yi = Di] instead. Regardless, our approach works for ex-ante
fairness maximization or service feasibility determination under arbitrary types of service.

Finally, we make a modeling contribution to online rationing, which is that permutation Λ can
be random. It is well-known in online contention resolution schemes that averaging over a random
order can improve guarantees; however, this observation was perhaps omitted in online rationing
because for ex-post fairness objectives, a random order does not help. We are particularly interested
in the random permutation where Λ is equally likely to be the order 1, . . . , n or its reverse n, . . . , 1,
recently considered in [ADK21]. One motivation for this permutation is online rationing at food
banks, where a mobile pantry5 drives along cities to ration food, and it does not increase6 driving
distance to visit the cities in reverse order on half of the days. We now derive CRS’s that are
specialized for this forward-backward random permutation, even beating the guarantee for single-
unit prophet inequality from [ADK21].

1.2 Contention Resolution Preliminaries

For n ∈ N, we refer to [n] as a collection of elements. Let f be the forward permutation, i.e., f(i) = i
for all i ∈ [n], and b be the backward permutation, i.e., b(i) = n − (i − 1) for each i ∈ [n]. For
σ ∈ {f, b} and distinct j, i ∈ [n], we denote j <σ i, provided σ(j) < σ(i).

4In fact, [MXX20] argue that ex-post fairness should go with Type-III service while ex-ante fairness should go
with Type-II. They study only the combinations E[mini Yi/Di] and mini E[Yi]/E[Di], which they call “short-run” and
“long-run” fairness respectively.

5See [LIS14, SJBY23, BHS23] for more background on this application. All of these papers assume independent
demands like we do, as daily shocks in food demand tend to be independent across locations.

6This would not be the case if the cities were visited in a uniformly random order, which is the more common
model of random permutations in the CRS literature [AW18, LS18].

4



An input to the knapsack forward-backward contention resolution scheme (FB-CRS) problem is
specified by (n, (Fi)

n
i=1), where each Fi is distribution on [0, 1]∪{∞}. (Here ∞ is a special symbol,

and we adopt the standard algebraic conventions involving it as an element of the extended reals.)
We assume that each i ∈ [n] independently draws a random size Si ∼ Fi. If Si < ∞, then
we refer to i as active. Otherwise, we refer to i as inactive. Note that using ∞ to distinguish
between active/inactive elements is non-standard in the contention resolution literature; however it
is convenient for our purposes, due to our fairness applications. In particular, in the reductions we
present in Section 2, we shall think of Si = ∞ as indicating that an agent i has demand too high
to be worth servicing. It is also important for our fairness reduction to allow the active elements
to have random sizes.

Let us assume that Λ is an independently drawn random permutation that is supported uni-
formly on {f, b}. A knapsack forward-backward contention resolution scheme (FB-CRS) is given
(n, (Fi)

n
i=1) as its input, and is also revealed the instantiation of Λ. It is then sequentially revealed

the random sizes of the elements in the increasing order specified by Λ. That is, in time step
t ∈ [n], if Λ(i) = t for i ∈ [n], then it learns the instantiation of Si. At this point, it makes an
irrevocable decision on whether to accept i. Its output is a subset of accepted elements I ⊆ [n]
for which

∑

i∈I Si ≤ 1. Note that by definition, a knapsack FB-CRS can never accept an inactive
element.

Given α ∈ [0, 1], we say that a knapsack FB-CRS is α-selectable on (n, (Fi)
n
i=1), or that α is the

selection guarantee of the FB-CRS on (n, (Fi)
n
i=1), provided for all i ∈ [n] and s ∈ [0, 1],

Pr[i ∈ I | Si = s] ≥ α. (1.3)

Here (1.3) is taken over the randomness in (Si)
n
i=1, Λ, as well as any randomized decisions made by

the FB-CRS. For knapsack constraints, we are interested in inputs with
∑n

i=1 E[Si ·1(Si <∞)] ≤ 1.
If for a fixed α ∈ [0, 1], a knapsack FB-CRS satisfies (1.3) for all such inputs, then we refer to it as
α-selectable.

An important special case is the forward-backward contention resolution problem for rank-1
matroids, which we hereafter refer to as single-unit CRS. An input for this problem is specified by
(n,x), where x = (xi)

n
i=1 is a collection of probabilities (i.e., 0 ≤ xi ≤ 1 for all i ∈ [n]). In this

case, Si ∈ {1,∞} and Pr[Si = 1] = xi for each i ∈ [n]. Clearly at most one active element can
be accepted by the FB-CRS, so we refer to it as a single-unit FB-CRS. The same definition (1.3)
applies to a single-unit FB-CRS; however we are also interested in deriving results for inputs with
∑n

i=1 E[Si · 1(Si < ∞)] =
∑n

i=1 xi > 1. For a fixed ρ ≥ 0 and α ∈ [0, 1], we refer to a single-unit
FB-CRS as (α, ρ)-selectable, provided it satisfies (1.3) for all inputs (n,x) with

∑n
i=1 xi ≤ ρ.

1.3 Results for Forward-backward Contention Resolution

Theorem 1.2. There exists a single-unit FB-CRS which is
(

exp(ρ/2)
1+exp(ρ/2)ρ , ρ

)

-selectable for all ρ ≥ 0.

In particular, if ρ = 1, then the selection guarantee is at least 1/(1 + e−1/2) > 0.622.

Theorem 1.3. Fix ρ ≥ 0. Then, no single-unit FB-CRS is more than
(

exp(ρ/2)
1+exp(ρ/2)ρ , ρ

)

-selectable.

For single-unit adversarial and random-order CRS’s, the tight selection guarantees are respec-
tively 1/2, due to [Ala14], and 1 − 1/e, due to [LS18]. Our tight guarantee of 1/(1 + e−1/2) for
FB-CRS is sandwiched strictly in-between these values.

CRS guarantees apply directly to the prophet inequality setting, in which agents have valua-
tions drawn from known independent distributions, and the objective is to maximize the expected
valuation of the accepted agent. By a standard reduction [FSZ21], our FB-CRS implies an online
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algorithm that accepts an agent with valuation at least 1/(1 + e−1/2) > 0.622 times the max-
imum valuation in expectation, improving upon the two-order prophet inequality guarantee of
(
√

5− 1)/2 ≈ 0.618 from [ADK21]. Interestingly, their guarantee is achieved using a static thresh-
old, and tight7 for this class of policies. This shows that in this two-order setting, the tight prophet
inequality for static thresholds ((

√
5− 1)/2) differs from the tight CRS guarantee (1/(1 + e−1/2)),

whereas in the fixed-order and random-order settings, the two tight guarantees coincide at 1/2 and
1− 1/e respectively [SC84, Ala14, EHKS18].

Theorem 1.4. There exists a knapsack FB-CRS which is 1/3-selectable.

As previously mentioned, 1/3 improves on the 1/(3+e−2) selection guarantee which was proven
to be tight for adversarial arrivals by [JMZ22]. While the selection guarantee of Theorem 1.4 is
derived in the forward-backward arrival model, it is actually the best known bound even for offline8

CRS. It appears difficult to leverage offline selection or random-order arrivals under knapsack
constraints, but we manage to leverage the forward-backward random order to improve upon the
result of [JMZ22] (see Subsection 1.4 for more details), which is why our result appears to be
state-of-the-art even for these “easier” arrival models.

Theorem 1.5. No knapsack FB-CRS is more than 1
2+e−1 -selectable.

We prove Theorem 1.5 on the same knapsack input considered by [JMZ22] to derive a (1−e−2)/2
hardness result for offline CRS’s. While we use the same input, we reduce the analysis to a related
single-unit input. Our bound then follows by taking ρ = 2 in Theorem 1.3.

1.4 Technical Overview

Reduction. We discuss allocating to Type-III service functions using a single-unit CRS, which
is the most challenging case in proving Theorem 1.1 and is also the service function used in [LIS14,
MNR21]. Given a service target βi, our convex region resembles an “ex-ante” relaxation that
computes, separately for agent i, the most efficient way to achieve target βi. This entails serving
agent i whenever their demand Di does not exceed some threshold di (possibly with randomized
tiebreaking), and if so, serving them as much as possible, i.e. serving them min{Di, 1}. From this
one can compute an ideal, minimal amount xi to allocate to i in expectation, which we input to
the single-unit CRS as their active probability. More precisely, di and xi satisfy

E

[

min{Di, 1}
Di

1(Di ≤ di)

]

= βi; E[min{Di, 1}1(Di ≤ di)] = xi. (1.4)

Our rationing algorithm then allocates to every agent i exactly cσ(i)xi supply in expectation,
where cσ(i) is the probability they are selected by the CRS conditional on arrival order σ. It uses
a simple threshold rule: agent i is allocated min{Di, Ri, τi} whenever Di ≤ di, where Ri ∈ [0, 1] is
the remaining supply, and τi ∈ [0, 1] is tuned so that

E[min{Di, Ri, τi}1(Di ≤ di)] = cσ(i)xi. (1.5)

We show that this can be inductively maintained as Ri dwindles, by using concavity to argue that
the worst-case distribution of Ri is bimodal, supported on {0,1}. In this case, feasibility of selection

7The hardness result of [ADK21] in fact is stronger, and applies to static threshold free-order prophet inequalities
whose random processing order has support size at most O(log n), where n is the number of elements.

8Offline CRS’s learn the instantiations of (Si)
n
i=1 all at once, and were the original model of contention resolution

introduced by [CVZ14].
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probabilities (cσ(i))i∈[n] in the CRS (under order σ) coincides exactly with there existing (τi)i∈[n]
that preserve the expected allocations in (1.5).

Finally, we need to show that (1.5) implies

E

[

min{Di, Ri, τi}
Di

1(Di ≤ di)

]

≥ cσ(i)βi, (1.6)

where the relationship between βi, di, and xi is implicit, as defined in (1.4). If we assume that
Di ≤ 1, then a single application of the FKG inequality establishes (1.6). The general case requires
a non-trivial in-between step showing that truncating demands to 1 can only correlate terms in our
favor, essentially still following the FKG inequality.

Single-unit FB-CRS For the purposes of this technical overview, let us assume that (n,x) is
a single-unit FB-CRS input with

∑n
i=1 xi = 1 (i.e., we explain the proof with ρ = 1). In order

to prove Theorems 1.2 and 1.3, our approach is to first characterize the instance-optimal selection
guarantee an FB-CRS can attain on (n,x). This can be done through the following linear program
(LP):

maximize min
1≤i≤n

(cf(i) + cb(i))/2

subject to cσ(i) ≤ 1−
∑

j<σi

xj · cσ(j) ∀i ∈ [n], σ ∈ {f, b}

cσ(i) ≥ 0 ∀i ∈ [n], σ ∈ {f, b}

in which variable cσ(i) represents the probability of accepting i conditional on it being active, under
permutation σ (see Subsection 3.1 for further details).

However, the challenge is to identify the minimum of LPOPT(n,x) over all inputs (n,x) with
∑n

i=1 xi = 1. Following the precedent in previous papers such as [Ala14, LS18, JMZ22], it is
reasonable to “guess” that the worst-case instance occurs when xi = 1/n for each i ∈ [n] and
n→∞. (While we show this implicitly in Section 3, in Appendix B.5 we provide a direct proof of
this.) Our proof strategy is to look at the structure of the optimal LP solution on this “worst-case”
instance, to inform a general method of constructing a feasible solution (that is not necessarily
optimal) on any instance, whose objective can be analytically lower-bounded by 1/(1 + e−1/2).

When xi = 1/n for each i ∈ [n], there are two key simplifying assumptions that we can make
involving an optimal LP solution. The first uses the uniformity of the xi values, and the second
allows us to remove the minimum in the objective:

1. cf(i) = cb(n − (i− 1)) for each i ∈ [n];

2. cf(i) + cb(i) = cf(1) + cb(1) for each i ∈ [n].

By restricting to such solutions, and taking n → ∞, we can reformulate our LP in terms of the
following optimization problem involving a continuous function φ : [0, 1]→ [0, 1]:

maximize (φ(0) + φ(1))/2 (cont-OPT)

subject to φ(z) + φ(1− z) = φ(0) + φ(1) ∀z ∈ [0, 1] (1.7)

φ(z) ≤ 1−
∫ z

0
φ(τ)dτ ∀z ∈ [0, 1] (1.8)

φ(z) ≥ 0 ∀z ∈ [0, 1], σ ∈ {f, b}

7



(Here we have applied cf(i) = φ(i/n) and cb(i) = φ(1− (i− 1)/n).)
Our goal is to solve cont-OPT. Constraint (1.8) implies that any solution φ should be non-

increasing on [0, 1]. To that end, one natural class of functions to try to optimize over is linear
functions. Doing so yields φ(z) = 2/

√
5 − (1 − 1/

√
5)z, in which case φ is a feasible solution to

(cont-OPT) that satisfies (φ(0) + φ(1))/2 = 1
2 (
√

5 − 1) ≈ 0.618. Coincidentally, this matches the
golden ratio bound for two-order prophet inequalities from [ADK21], that was obtained through a
threshold analysis unrelated to CRS.

To go beyond their golden ratio bound, we guessed that a better solution to cont-OPT should
make (1.8) hold as equality for all z ∈ [1/2, 1]. Combined with (1.7), this allowed us to identify a
collection of piece-wise defined functions which are feasible. By optimizing over all such functions,
this led to following solution, which satisfies (φ(0) + φ(1))/2 = 1/(1 + e−1/2) ≈ 0.622:

φ(z) :=

{

2e1/2−ez

1+e1/2
if z ≤ 1/2,

e1−z

1+e1/2
if 1/2 < z ≤ 1.

(1.9)

In Subsection 3.1, we formally show how to use (1.9) to complete the proof of Theorem 1.2.
To prove the negative result Theorem 1.3, for the family of inputs described by xi = 1/n for

all i, we show that LPOPT(n,x) is upper-bounded by (1 + o(1))/(1 + e−1/2), where o(1) tends
to 0 as n → ∞. We upper-bound LPOPT(n,x) using weak duality and the challenge lies in
identifying a dual feasible solution for this family of inputs whose objective value can be analyzed
to be (1 + o(1))/(1 + e−1/2) as n→∞. Our strategy is similar to the description above of how we
lower-bounded LPOPT, which is to study the continuous analogue as n→∞. Interestingly, for the
dual we must modify its solution, due to a discrepancy in the optimal solution for the continuous
problem vs. any finite n. In particular, for finite n, the solution has a “discontinuity” where it must
take an enormous value at n/2 to ensure feasibility. The details can be found in Subsection 3.2.

Knapsack FB-CRS For the purpose of this overview, let us assume that our knapsack input
(n, (Fi))

n
i=1 has deterministic sizes. That is, there exists probabilities (xi)

n
i=1 and (non-negative)

sizes (si)
n
i=1, such that Si ∈ {si,∞}, and Pr[Si = si] = xi for each i ∈ [n]. More, assume that

∑n
i=1 sixi = 1.
When designing a knapsack FB-CRS, one natural approach is to first split the elements into

low and high elements, based on their associated size si. Concretely, let L = {i ∈ [n] : si ≤ 1/2}
and H = {i ∈ [n] : si > 1/2}. Moreover, assume that

∑

i∈L sixi =
∑

i∈H sixi = 1/2. Clearly an

FB-CRS can select at most one element from H, and so since
∑

i∈H xi

2 ≤∑i∈H sixi = 1/2, we can

immediately ensure a selection guarantee of 1/(1 + e−1/2) ≈ 0.622 on H by applying Theorem 1.2
with ρ = 1. On the other hand, since the elements of L have deterministic sizes at most 1/2, it is
possible to extend our approach to proving Theorem 1.2 to get a selection guarantee of 1/(1+e−1/2)
on L. Unfortunately, we have to balance prioritizing L or H, and so the best selection guarantee
attainable in this way is 1/(2(1 + e−1/2)) ≈ 0.311. This is strictly worse than 1/(3 + e−2) ≈ 0.319,
the selection guarantee attained by [JMZ22] for a single arrival order.

To beat 1/(3 + e−2), we instead use the invariant-based argument in [JMZ22] to characterize
feasible probabilities (cf(i), cb(i))ni=1 (see Definition 5), for which it is possible for an online algorithm
to accept i with probability cσ(i) conditional on i being active and Λ = σ, for all i ∈ [n] and
σ ∈ {f, b}. This would lead to a selection guarantee of mini∈[n](cf(i)+ cb(i))/2, after averaging over
Λ. We repeat the proof strategy throughout the paper of using a continuous function φ to define
these feasible selection probabilities. Fortunately, in this case optimizing over linear functions φ
suffices to get a clean bound of 1/3, that beats the single-order guarantee of 1/(3 + e−2) from
[JMZ22].
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Interestingly, our actual algorithm follows an arguably simpler heuristic than [JMZ22], which
is also sufficient to recover their 1/(3 + e−2) result. After conditioning on Λ = σ ∈ {f, b}, the main
observation is that when deciding whether to accept i, we should prioritize the acceptance of i
on feasible sample paths where at least one other (non-zero) element was previously accepted. In
other words, we avoid accepting i on sample paths where nothing else has been previously accepted,
only doing so if necessary. Consequently, our algorithm ends up being stated differently than the
algorithm from [JMZ22] that sets a threshold on size, leading to an arguably simpler proof, and
allowing us to establish the guarantee of 1/3 in our forward-backward setting.

See Subsection 4.1 for details of this knapsack FB-CRS. Our negative result for knapsack FB-
CRS, in Subsection 4.2, recycles the result of Theorem 1.3 for a general ρ.

1.5 Further Related Work

Online rationing. We refer to [SJBY23] for a recent work describing the mobile food pantry
application, which also discusses competing fairness objectives and how they can be simultaneously
captured by Nash social welfare. In food rationing applications, it is also natural if the initial
supply can perish over time, as studied in [BHS23]. These papers contain more extensive references
to the online fair resource allocation literature.

In general, we have already mentioned the technical results most related to ours in Subsec-
tion 1.1, but should further mention the concurrent work [SSX24]. They derive a competitive ratio
of 1/2 for online rationing under ex-ante Type-III service, given a fixed arrival order. Our work
focuses on forward-backward arrival order and shows how to beat 1/2 under this assumption, while
also applying to other types of service. By contrast, their work also applies to ex-post fairness
objectives, which we cannot handle.

Contention resolution. Beginning with the works of [CVZ14, GN13, FSZ21], CRS’s have found
broad applications as a general purpose tool in online and stochastic optimization. We refer to
[Dug20, Dug22] for a connection to the matroid secretary problem, [PW24, NSW25] for applications
to stationary prophet inequalities and prophet approximation, and [FLT+24] for an application to
matroid prophet inequalities with limited sample access.

CRS’s have been studied for a wide range of constraint systems. In this paper we focus on
single-unit and knapsack, but there is also a lot of work for k-unit selection [Ala14, JMZ22, DW24],
matroids [FSZ21, LS18, Dug20, FLT+24], and matchings [EFGT22, MMG24, PRSW22, FTW+21].
How forward-backward CRS fits relative to adversarial-order and random-order CRS could be
investigated for all of these constraint systems.

CRS’s have been recently adapted to handle correlation in the elements’ activeness [QS22,
GHKL24, DKP24, MMZ24, BMMP24], expanding their applicability as a general purpose tool.

Prophet inequality variants. There is a vast literature on prophet inequalities beyond adver-
sarial arrivals. Classical variants include random-order [EHLM17, ACK18, CSZ19] in which the
state-of-the-art is 0.688 due to [CHLT25]. An important special case is when valuations are drawn
from identical distributions, in which case the tight guarantee is ≈ 0.745 [CFH+21, Ker86]. In
the variant where the arrival order is chosen by the algorithm, there has been substantial recent
progress (see [PT22, BC23, GMTS24]).

We study a random arrival order beyond these basic models, inspired by [ADK21]. We should
note that there is also a line of work [KKN15, HKKO22] studying random arrival orders beyond
the basic ones in settings with unknown distributions.
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Fairness in optimal stopping in the prophet setting has also been recently considered in [AK22],
[CCDNF21]. These papers respectively study individual and group-level fairness constraints that
are unrelated to our fairness notions based on CRS.

Incentive-compatible rationing and supply chain management. Classical economics lit-
erature has considered the offline rationing of a single infinitely-divisible resource when agents
have unknown single-peaked preferences. A celebrated prior-free incentive-compatible mechanism
was developed in [Spr91], which has been generalized in [BJN97]. Meanwhile, it is well-known in
classical supply chain literature that retailers may exaggerate demands under typical proportional
allocation rules used by distributors in times of shortage [LPW97, CL99]. Without disincentive for
overallocation, this is guaranteed to lead to cheap talk that can manifest in practice [BYDH19],
although there are solutions under repeated games [BGS19].

Our notions of Type-I, II, and III service are well-established in supply chain literature (see
[JWZ23] and the references therein). We should note that the original motivation in [JWZ23]
and several related papers [ZZCT18, LCC+19] is inventory pooling, i.e. the increased feasibility
of service targets if supply is divided after seeing demand realizations instead of having dedicated
stockpiles beforehand.

2 Reducing from Rationing to CRS

Our goal in this section is to prove Theorem 1.1. First we define the notion of quantiles.

Definition 3. For a distribution F over non-negative reals, define its inverse CDF over q ∈ [0, 1]
to be F−1(q) := inf{d : q ≤ F (d)}. Define each agent i ∈ [n] to draw an independent quantile Qi

uniformly from [0,1], and then have demand Di = F−1
i (Qi).

Definition 3 provides an equivalent method of generating demands. If demands cannot be
generated like this and one only observes Di (drawn from a known Fi) instead, then quantile Qi

can be assigned as follows: if Fi has no discrete mass on the realized value of Di, then Qi := Fi(Di);
otherwise, if Fi has mass δ on Di, then assign Qi uniformly at random from (Fi(Di) − δ, Fi(Di)].
The resulting distribution of quantiles is uniform modulo a set of measure 0.

Using the inverse CDF, we now define the convex region referenced in Theorem 1.1.

Definition 4. Given service types from Definition 1, define the ex-ante feasible region to be the
collection of service targets (βi)i∈[n] ∈ [0, 1]n for which there exist (qi)i∈[n] ∈ [0, 1]n satisfying

n
∑

i=1

∫ qi

0
min{F−1

i (q), 1}dq ≤ 1 (2.1)

∫ qi

0
si
(

min{F−1
i (q), 1}, F−1

i (q)
)

dq = βi ∀i ∈ [n]. (2.2)

Remark 1. Constraints (2.1)–(2.2) can be simplified under the specific service types from Defini-
tion 1, which also allows us to see that the ex-ante feasible region is convex. We first note that the
left-hand side (LHS) of constraints (2.1) are convex in qi, because the derivative is min{F−1

i (qi), 1}
which is non-decreasing in qi. Therefore, (2.1) induces a convex feasible region for (qi)i∈[n]. We now
show that (2.2) also induces a convex feasible region for each qi, which when taken in intersection
with the convex region from (2.1) would establish that the ex-ante feasible region is convex. We
separately consider each service type:
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1. If si is a Type-I service function, i.e. si(y, d) = 1(y ≥ d), then (2.2) becomes

βi =

∫ qi

0
1(F−1

i (q) ≤ 1)dq = min{qi, Fi(1)} (2.3)

which is equivalent to the convex constraints βi ≤ qi and βi ≤ Fi(1);

2. If si is a Type-II service function, i.e. si(y, d) = min{y, d}/µi, then (2.2) becomes

βi =
1

µi

∫ qi

0
min{F−1

i (q), 1}dq (2.4)

which induces a convex region for qi because it consists of a single point (note that this also
leads to the term

∫ qi
0 min{F−1

i (q), 1}dq in (2.1) simplifying to βiµi);

3. If si is a Type-III service function, i.e. si(y, d) = min{y, d}/d, then the LHS of (2.2) becomes

∫ qi

0
min{1, 1

F−1
i (q)

}dq (2.5)

which is concave in qi, inducing a convex region.

We also note that for discrete distributions, (2.1)–(2.2) simplify to linear constraints and the feasible
region is a polytope.

Intuitively, (2.2) is saying that if agent i is granted the entire supply of 1 whenever their quantile
lies below qi, i.e. allocated min{Di, 1} when Qi ≤ qi, then the expected service provided would be

E[si(min{Di, 1},Di)1(Qi ≤ qi)] =

∫ qi

0
si
(

min{F−1
i (q), 1}, F−1

i (q)
)

dq = βi. (2.6)

Meanwhile, (2.1) is saying that the total expected supply allocated this way cannot exceed 1.
Given these interpretations, the following lemma is straight-forward to prove. We do need

the property of all service functions from Definition 1 that the service provided relative to supply
allocated is weakly decreasing in the demand, i.e. it is most “supply-efficient” to allocate to low
demands, or equivalently low quantiles. We note this is opposite in mechanism design and prophet
inequalities, where one would like to allocate to high valuations (see [Har13, Ch. 3]).

Lemma 2.1 (proof in Appendix A.1). Under the service types from Definition 1, for any (online
or offline) algorithm, the vector (E[si(Yi,Di)])i∈[n] lies in the ex-ante feasible region.

Given (βi)i∈[n] in the ex-ante feasible region, we can use a CRS to define an online rationing
algorithm. The reduction is quite obvious for the statement about knapsack CRS in Theorem 1.1.
Indeed, define element i to be active with size Si = min{Di, 1} if Qi ≤ qi, and inactive otherwise.
Individual sizes are at most 1 by definition, and the expected total size of active elements is at
most 1 by (2.1). Therefore, we can query a knapsack CRS and set Yi = Si (using up capacity Si)
whenever the CRS says to accept element i, and set Yi = 0 otherwise. By the CRS guarantee,
we have Yi = Si with probability at least α conditional on Qi = q, for any q ≤ qi. Therefore,
E[si(Yi,Di)] ≥ α · E[si(Si,Di)1(Qi ≤ qi)] = αβi by (2.6), establishing (1.1) in Theorem 1.1.

The reduction to single-unit CRS, however, is non-trivial and requires defining fractional allo-
cations based on a CRS that accepts or rejects. (Although the knapsack reduction works for all
service types, selection guarantees are much better for single-unit CRS, and hence we should use

11



the latter if all service functions are of Type-II or III.) To use the single-unit CRS, given (βi)i∈[n]
in the ex-ante feasible region, we take corresponding values of (qi)i∈[n], and define

xi :=

∫ qi

0
min{F−1

i (q), 1}dq ∀i ∈ [n] (2.7)

as the activeness probabilities in the CRS, which satisfy
∑n

i=1 xi ≤ 1 by (2.1). We obtain conditional
acceptance probabilities cσ(i) for each element i under each permutation σ (for FB-CRS, this would
be returned by the LP-SI described in Section 3). The way in which these conditional probabilities
are used to derive fractional allocations back in the rationing problem is described in Algorithm 1.

Algorithm 1 Using a Single-Unit CRS to define a Rationing Algorithm

Input: (qi)i∈[n] satisfying (2.1)–(2.2), and (cσ(i))i∈[n] ∈ [0, 1]n returned by the CRS for every
arrival order σ in the support of Λ (the input to the CRS is determined via (2.7))

Output: (random) online allocations Y1, . . . , Yn satisfying E[si(Yi,Di)] ≥ E[cΛ(i)]βi for all i
1: Initialize Rem = 1 ⊲ Remaining supply
2: Observe realized permutation Λ and call it σ
3: for i arriving in increasing order of σ do
4: Observe quantile Qi and demand Di = F−1

i (Qi) ⊲ see Definition 3
5: if Qi ≤ qi then ⊲ Only allocate to i if Qi ≤ qi
6: Set Yi = min{Di, Rem, τi}, where τi is calibrated so that ⊲ We will prove τi exists

ERem

[

∫ qi

0
min{F−1

i (q), Rem, τi}dq
∣

∣

∣
Λ = σ

]

= cσ(i)xi (2.8)

7: Update Rem = Rem− Yi

Intuitively, Algorithm 1 only considers allocating to an agent i if Qi ≤ qi, because as mentioned
earlier, it is most supply-efficient to allocate to low demands. The amount allocated is limited by
both Di and Rem, but we would like to further limit it to a threshold τi, to preserve the expected
allocation of the CRS which is cσ(i)xi (conditional on Λ = σ). We emphasize that the expectation
in (2.8) is taken over the randomness in Rem; i.e., the algorithm ignores the present value of Rem
and considers the distribution of remaining supply over all sample paths to do the calibration.

Lemma 2.2. Suppose every service function si is of Type-II or Type-III. Then given (βi)i∈[n] in the
convex ex-ante feasible region and an α-selectable single-unit CRS, Algorithm 1 provides expected
service at least αβi to every agent i.

Proof of Lemma 2.2. We fix σ throughout the proof and all statements are made conditioning on
Λ = σ. Let Ri denote the remaining supply Rem when agent i arrives (under this σ). For i in
increasing order of σ, we inductively establish that τi exists. We then show that the resulting
allocation satisfies E[si(Yi,Di) | Λ = σ] ≥ cσ(i)βi. Since an α-selectable FB-CRS implies that
E[cΛ(i)] ≥ α by definition, this would provide expected service E[si(Yi,Di)] ≥ αβi to every agent
i, as desired.

In the base case, where i is first to arrive and hence Rem = 1, the LHS of (2.8) continuously
decreases from xi to 0 as τi decreases from 1 to 0. Because cσ(i) ∈ [0, 1], the mean value theorem
ensures the existence of a value τi ∈ [0, 1] at which equality in (2.8) is achieved. Equality in (2.8)
can be equivalently written as

E[Yi | Λ = σ] = E[min{Di, Ri, τi}1(Qi ≤ qi) | Λ = σ] = cσ(i)xi. (2.9)
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We now show that (2.9) can be maintained. By induction, E[Yj | Λ = σ] = cσ(j)xj for all j who
came before i under permutation σ, and hence E[Ri | Λ = σ] = 1−∑j<σi

cσ(j)xj . Now, note that
∫ qi
0 min{F−1

i (q), r}dq is a concave function of r. Therefore, to minimize E[
∫ qi
0 min{F−1

i (q), Ri}dq |
Λ = σ] over all distributions of Ri ∈ [0, 1] with a fixed mean, Ri should be bimodally distributed,
i.e. Ri = 1 with probability 1−∑j<σi

cσ(j)xj and Ri = 0 otherwise. This implies

E

[

∫ qi

0
min{F−1

i (q), Ri}dq
∣

∣

∣Λ = σ
]

≥
(

1−
∑

j<σi

cσ(j)xj

)

∫ qi

0
min{F−1

i (q), 1}dq

≥ cσ(i)

∫ qi

0
min{F−1

i (q), 1}dq ,

where the final inequality holds because 1 −∑j<σi
cσ(j)xj ≤ cσ(i) is a necessary constraint for

the conditional acceptance probabilities of a single-unit CRS under any arrival order σ (see con-
straint (3.1)). Because

∫ qi
0 min{F−1

i (q), 1}dq = xi by definition (2.7), this proves that the LHS
of (2.8) is at least cσ(i)xi when τi = 1, so we can again apply the mean value theorem to justify the
existence of a value τi ∈ [0, 1] at which equality in (2.8) is achieved. This completes the induction
and establishes (2.9) for every agent i.

Finally, we show that (2.9) implies E[si(Yi,Di) | Λ = σ] ≥ cσ(i)βi as long as si is the Type-II
or Type-III service function, which would complete the proof of Lemma 2.2. Because si(Yi,Di) =
si(min{Di, Ri, τi},Di)1(Qi ≤ qi), if si is the Type-II service function, then

E[si(Yi,Di) | Λ = σ] =
1

µi
E[min{Di, Ri, τi}1(Qi ≤ qi) | Λ = σ] =

cσ(i)xi
µi

= cσ(i)βi

where βi = xi/µi for Type-II service by the definition of xi and the derivation in (2.4). On the
other hand, if si is the Type-III service function, then we express (2.9) as

cσ(i)xi =

∫ qi

0
F−1
i (q)

E[min{F−1
i (q), Ri, τi} | Λ = σ]

F−1
i (q)

dq

≤ 1

qi

∫ qi

0
F−1
i (q)dq

∫ qi

0

E[min{F−1
i (q), Ri, τi} | Λ = σ]

F−1
i (q)

dq (2.10)

=

(

1

qi

∫ qi

0
F−1
i (q)dq

)

E[si(min{Di, Ri, τi},Di)1(Qi ≤ qi) | Λ = σ]

where we have applied the FKG inequality, noting that F−1
i (q) is non-decreasing in q while

E[min{F−1
i (q),Ri,τi}|Λ=σ]

F−1
i (q)

is non-increasing in q. If qi ≤ Fi(1), then xi =
∫ qi
0 F−1

i (q)dq by definition

and qi = βi by the derivation in (2.5) for Type-III service. This would imply cσ(i)βi ≤ E[si(Yi,Di) |
Λ = σ], completing the proof. On the other hand, if qi > Fi(1), then the proof requires more com-
plicated derivations of a similar nature. We show that (2.9) implies E[si(Yi,Di) | Λ = σ] ≥ cσ(i)βi
in the final case of Lemma 2.2, where si is the Type-III service function and qi > Fi(1). For brevity,
we omit index i and the conditioning on Λ = σ. We derive

E[s(Y,D)] =

∫ F (1)

0

E[min{F−1(q), R, τ}]
F−1(q)

dq +

∫ q

F (1)

E[min{R, τ}]
F−1(q)

dq

≥
∫ F (1)
0 E[min{F−1(q), R, τ}]dq

∫ F (1)
0 F−1(q)dq

F (1) +
(q − F (1))E[min{R, τ}]

q − F (1)

∫ q

F (1)

1

F−1(q)
dq (2.11)
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by applying the FKG inequality on the first term, in the same way as in (2.10).
Our goal is to show that this is at least

∫ F (1)
0 E[min{F−1(q), R, τ}]dq + (q − F (1))E[min{R, τ}]

∫ F (1)
0 F−1(q)dq + q − F (1)

(

F (1) +

∫ q

F (1)

1

F−1(q)
dq

)

(2.12)

=

∫ q
0 E[min{F−1(q), R, τ}]dq
∫ q
0 min{F−1(q), 1}dq

∫ q

0
min{1, 1

F−1(q)
}dq

=
cσ(i)xi

xi
βi

which would complete the proof (the final equality applies (2.9), (2.7), and (2.5)).

To show that (2.11) is at least (2.12), we define the shorthand a =
∫ F (1)
0 E[min{F−1(q), R, τ}]dq,

b =
∫ F (1)
0 F−1(q)dq, c = (q − F (1))E[min{R, τ}], d = q − F (1), x = F (1), and y =

∫ q
F (1)

1
F−1(q)

dq.

Our goal is to prove that

a

b
x +

c

d
y ≥ a + c

b + d
(x + y) (2.13)

where a, b, x ≥ 0 and c, d, y > 0 (because q > F (1)). We first handle the degenerate case b = 0,
under which a = 0 and a/b = 1, which means (2.13) reduces to x + c

dy ≥ c
d(x + y) which is true

because c/d ≤ 1. Now assuming b > 0, we see that (2.13) is equivalent to the following:

adx + bcy

bd
≥ a + c

b + d
(x + y)

(adx + bcy)(b + d) ≥ (a + c)(x + y)bd

(da)(dx) + (bc)(by) ≥ (da)(by) + (bc)(dx) (2.14)

We prove the final inequality (2.14). Note that

d · a = (q − F (1))

∫ F (1)

0
E[min{F−1(q), R, τ}]dq = (q − F (1))

∫ F (1)

0
E[min

{

F−1(q),min{R, τ}
}

]dq

bc =

∫ F (1)

0
F−1(q)dq(q − F (1))E[min{R, τ}] = (q − F (1))

∫ F (1)

0
E[F−1(q) ·min{R, τ}]dq

so we have da ≥ bc ≥ 0 because the minimum of two numbers in [0,1] is greater than their product
(F−1(q) ≤ 1 for q ≤ F (1), and also min{R, τ} ≤ 1). Meanwhile, note that

d · x = (q − F (1))F (1)

by =

∫ F (1)

0
F−1(q)dq

∫ q

F (1)

1

F−1(q)
dq

so we have dx ≥ by ≥ 0 because F−1(q) ≤ 1 for q ≤ F (1) and F−1(q) ≥ 1 for q ≥ F (1). By the
rearrangement inequality, (2.14) holds indeed. This completes the proof.

Lemmas 2.1 and 2.2, in conjunction with the observations about convexity and the simple
reduction for knapsack CRS, complete the proof of Theorem 1.1. We end with some remarks.

Remark 2. The reductions presented in this section hold under any method of generating the
arrival order Λ (adversarial, uniformly random, etc.), as long as the method is the same in the
online rationing problem and CRS. That being said, in this paper we will only apply the reductions
for FB-CRS.
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Remark 3. Implementing Algorithm 1 requires tracking the distribution of Rem, which can be
approximated by sampling the history. We omit the details, as this assumption has been used in
previous online CRS works (e.g., [EFGT22, MMG24]). We refer to [Ma18, MM24] for papers where
this argument is formally spelled out.

3 Details of Single-unit FB-CRS Results

In the single-unit FB-CRS problem, an input is specified by (n,x), where n ∈ N, and x = (xi)
n
i=1

is a collection of probabilities. Recall that Pr[Si = 1] = xi for each i ∈ [n].
In order to prove Theorems 1.2 and 1.3, we first write a mathematical program to characterize

the optimal selection guarantee an FB-CRS can attain on (n,x). For each i ∈ [n] and σ ∈ {f, b},
we introduce a variable cσ(i) corresponding to the probability that the FB-CRS accepts i ∈ [n],
given Si = 1 and Λ = σ.

maximize min
1≤i≤n

(cf(i) + cb(i))/2 (LP-SI)

subject to cσ(i) ≤ 1−
∑

j<σi

xj · cσ(j) ∀i ∈ [n], σ ∈ {f, b} (3.1)

cσ(i) ≥ 0 ∀i ∈ [n], σ ∈ {f, b} . (3.2)

Here min1≤i≤n(cf(i)+cb(i))/2 corresponds to the selection guarantee achieved by the FB-CRS, and
(3.1) says that if i is accepted assuming Λ = σ, then no previous element j <σ i could have been.
Note that by introducing an additional variable β ≥ 0, and the constraints (cf(i) + cb(i))/2 ≥ β for
each i ∈ [n], we can maximize for β, and reformulate LP-SI as a linear program (LP). Thus, LP-SI
can be solved efficiently, and we denote the value of an optimal solution to LP-SI by LPOPT(n,x).

We now design an FB-CRS which we prove is LPOPT(n,x)-selectable on (n,x). Afterwards,
we show that this is best possible. That is, no FB-CRS is greater than LPOPT(n,x)-selectable on
(n,x).

Algorithm 2 Single-unit FB-CRS

Input: elements [n] and x = (xi)
n
i=1 which satisfies

∑n
i=1 xi = ρ.

Output: at most element i ∈ [n] with Si = 1.
1: Compute an optimal solution of LP-SI to obtain (cf(i), cb(i))ni=1.
2: Observe realized permutation Λ and call it σ
3: for i ∈ [n] arriving in increasing order of σ do

4: Draw Bσ(i) ∼ Ber

(

cσ(i)

1−∑j<σi
xj · cσ(j)

)

independently.

5: if Bσ(i) · Si = 1 and no element was previously accepted then
6: return i.

Remark 4. Algorithm 2 is well-defined, as cσ(i)
1−

∑
j<σi xj ·cσ(j)

≤ 1 for each σ ∈ {f, b} and i ∈ [n] by

(3.1) of LP-SI.

Lemma 3.1 (proof in Appendix B.1). Algorithm 2 is LPOPT(n,x)-selectable on (n,x). Moreover,
no FB-CRS is more than LPOPT(n,x)-selectable on (n,x).
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3.1 FB-CRS Positive Result: Proving Theorem 1.2

Fix ρ ≥ 0. Observe that to prove Theorem 1.2, without loss we can restrict to inputs (n,x) with
∑n

i=1 xi = ρ, and for which mini∈[n] xi > 0. More, by Lemma 3.1, it suffices show that

LPOPT(n,x) ≥ exp(ρ/2)

1 + exp(ρ/2)ρ
, (3.3)

as then Algorithm 2 attains the selection guarantee claimed in Theorem 1.2. We prove (3.3) by

constructing a feasible solution to LP-SI with value at least exp(ρ/2)
1+exp(ρ/2)ρ . To help us describe the

solution, we first define a continuous function φ : [0, ρ]→ [0, 1]. Specifically, for each z ∈ [0, ρ],

φ(z) :=

{

2eρ/2−ez

1+eρ/2ρ
if z ≤ ρ/2,

eρ−z

1+eρ/2ρ
if ρ/2 < z ≤ ρ.

(3.4)

Note that (3.4) generalizes (1.9) from Subsection 1.4 to an arbitrary value of ρ ≥ 0.

Proposition 3.2 (Proof in Appendix B.2). Function φ : [0, ρ]→ [0, 1] defined in (3.4) satisfies the
following:

1. φ is continuous and decreasing on [0, ρ].

2. For each z ∈ [0, ρ],

φ(z) + φ(ρ− z)

2
=

exp(ρ/2)

1 + exp(ρ/2)ρ
; (3.5)

φ(z) ≤ 1−
∫ z

0
φ(τ)dτ. (3.6)

Remark 5. Properties (3.5) and (3.6) correspond to the objective and constraints of LP-SI for an
input with max1≤i≤n xi → 0. Thus, we can interpret (φ(z), φ(ρ− z))0≤z≤ρ as a limiting solution of
LP-SI as max1≤i≤n xi → 0. The first property (1) is a technical assumption to help us verify (3.3).

For each i ∈ [n] and σ ∈ {f, b}, let us now define xσ(i) :=
∑

j<σi
xj where xf(1) = xb(n) := 0

for convenience. Using φ, and recalling that
∑n

i=1 xi = ρ, we define (cf(i), cb(i))ni=1 as follows:

cf(i) :=

∫ xf(i)+xi

xf(i)

φ (τ)

xi
dτ , and cb(i) :=

∫ xb(i)+xi

xb(i)

φ (τ)

xi
dτ . (3.7)

Here = cσ(i) is the average value of the function φ on the interval [xσ(i), xσ(i) +xi]. As such, cσ(i)
agrees exactly with φ for inputs with max1≤i≤n xi → 0, and is a decreasing function on [0, ρ]. Thus,
the further an element i is in the order specified by σ ∈ {f, b}, the smaller the value of cσ(i).

Lemma 3.3. Fix an input (n,x) with
∑n

i=1 xi = ρ. Then, (cf(i), cb(i))ni=1 defined in (3.7) is a
feasible solution to LP-SI with

LPOPT(n,x) ≥ min
1≤i≤n

cf(i) + cb(i)

2
=

exp(ρ/2)

1 + exp(ρ/2)ρ
. (3.8)
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Proof of Lemma 3.3. Recall that
∑n

i=1 xi = ρ, and mini∈[n] xi > 0. To verify the left-most inequal-
ity of (3.8), we first argue that (cf(i), cb(i))ni=1 is a feasible solution to LP-SI. In order to see this,
observe that

∑

j<i

cf(j)xj =
∑

j<i

∫ xf(j)+xj

xf(j)
φ(τ)dτ =

∫ xf(i)

0
φ(τ)dτ. (3.9)

On the other hand, since φ is a decreasing function (by Proposition 3.2),

cf(i) =

∫ xf(i)+xi

xf(i)

φ(τ)dτ

xi
≤ φ(xf(i)). (3.10)

By applying (3.9) and (3.10), we get that cf(i) +
∑

j<i cf(j)xj ≤ φ(xf(i)) +
∫ xf(i)
0 φ(τ)dτ ≤ 1, where

the final inequality uses (3.6) of Proposition 3.2. Similarly, by the definition of (cb(i))ni=1,

cb(i) +
∑

j>i

cb(j)xj ≤ φ(xb(i)) +

∫ xb(i)

0
φ(τ)dτ ≤ 1.

Thus, (cf(i), cb(i))ni=1 is feasible, and so the leftmost inequality of (3.8) is established. It remains
to verify the rightmost inequality of (3.8). Observe that for any i ∈ [n], we have that xb(i) + xi =
ρ− xf(i). Thus,

cf(i) + cb(i)

2
=

∫ xf(i)+xi

xf(i)

φ(τ)

2xi
dτ +

∫ xb(i)+xi

xb(i)

φ(τ)

2xi
dτ

=

∫ xf(i)+xi

xf(i)

φ(τ)

2xi
dτ +

∫ ρ−xf(i)

ρ−xf(i)−xi

φ(τ)

2xi
dτ

=
1

xi

(

∫ xf(i)+xi

xf(i)

φ(τ) + φ(ρ− τ)

2
dτ

)

=
exp(ρ/2)

1 + exp(ρ/2)ρ
,

where the third equality applies a change of variables, and the last equality applies (3.5) of Propo-

sition 3.2. Thus, mini∈[n]
cf(i)+cb(i)

2 = exp(ρ/2)
1+exp(ρ/2)ρ , and so the proof is complete.

Lemma 3.3 implies (3.3), and so due to the discussion at the beginning of the section, this
completes the proof of Theorem 1.2.

3.2 Single-unit FB-CRS Hardness Result: Proving Theorem 1.3

To prove Theorem 1.3, we fix an arbitrary ρ ≥ 0, and consider the input (N,x) with
∑N

i=1 xi = ρ,
and xi := ρ/N for all i ∈ [N ]. For convenience, we assume that N is odd; that is N = 2n + 1 for
some n ≥ 0. Our goal is to prove the following.

Theorem 3.4. Fix ρ ≥ 0, and N = 2n + 1 for n ≥ 0. If xi = ρ/N for all i ∈ [N ], then

LPOPT(N,x) ≤ exp(ρ/2)

1 + exp(ρ/2)ρ
+

ρ + 2

N
.

Due to Lemma 3.1, we can then take N → ∞ to establish Theorem 1.3. Thus, the remainder
of the section is focused on proving Theorem 3.4. In order to prove it, we first take the dual of
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LP-SI on the input (N,x). We reformulate it in an equivalent way that is more convenient for our
purposes (see Appendix B.3 for details):

minimize

N
∑

i=1

(yf(i) + yb(i))

N
(dual-LP-SI)

subject to yσ(i) +
∑

j>σi

ρ · yσ(j)

N
− ξ(i)

2
≥ 0 ∀i ∈ [N ], σ ∈ {f, b} (3.11)

n
∑

i=1

ξ(i)

N
≥ 1 (3.12)

ξ(i), yf(i), yb(i) ≥ 0 ∀i ∈ [N ]. (3.13)

Our goal is to construct a feasible solution (ξ(i), yf(i), yb(i))Ni=1 to dual-LP-SI of value at most

α0 + ρ+2
N , where α0 := exp(ρ/2)

1+exp(ρ/2)ρ . By weak duality, this will imply Theorem 3.4.

We begin by defining (ξ(i))Ni=1, which is constant except at element n + 1. Specifically,

ξ(i) =

{

ρ · α0 if i 6= n + 1,
(

1− ρ · α0
N−1
N

)

·N if i = n + 1.
(3.14)

In order to state (yf(i), yb(i))Ni=1, we first define a function γ : [ρ/2, ρ] → [0, 1], where for each
z ∈ [ρ/2, ρ],

γ(z) :=
ρ exp(z − ρ/2)

2(1 + exp(ρ/2)ρ)
. (3.15)

The solution (yf(i))
N
i=1 is then identically 0 for i < n+1, takes on value (1+ξ(n+1))/2 at i = n+1,

and is otherwise γ(ρ · i/N). Finally, yb(i) := yf(N − (i− 1)) for each i ∈ [N ]. To summarize,

yf(i) :=











0 if i < n + 1,
ξ(n+1)

2 + 1
2 if i = n + 1,

γ(ρi/N) if n + 1 < i ≤ N.

yb(i) :=











γ(ρ− ρ(i− 1)/N) if i < n + 1,
ξ(n+1)

2 + 1
2 if i = n + 1,

0 if n + 1 < i ≤ N.

(3.16)

Lemma 3.5. Fix ρ ≥ 0, N = 2n + 1 for n ≥ 0, and set xi = ρ/N for all i ∈ [N ]. Then,
(ξ(i), yf(i), yb(i))Ni=1 as defined in (3.14) and (3.16) is a feasible solution to dual-LP-SI for which

N
∑

i=1

yf(i) + yb(i)

N
≤ α0 +

ρ + 2

N
.

In order to prove Lemma 3.5, we need the following properties of γ:

Proposition 3.6 (proof in Appendix B.4). Function γ : [ρ/2, ρ]→ [0, 1] defined in (3.15) satisfies
the following:

1. γ is 1-Lipschitz and increasing.

2. For each z ∈ [ρ/2, ρ],

γ(z) +

∫ ρ

z
γ(τ)dτ =

ρ · α0

2
. (3.17)
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Remark 6. Since ξ(i) = ρ·α0

2 , except for at i = n + 1, property (3.17) corresponds to constraint
(3.11) as N →∞. Since (γ(z))ρ/2<z≤ρ (respectively, (γ(ρ − z))0≤z<ρ/2) is the limit of (yf(i))i>n+1

(respectively, (yb(i))i<n+1), this suggests (3.11) holds for i > n + 1 (respectively, i < n + 1). That
being said, at i = n+ 1, yf(n+ 1) = yb(n+ 1)→ (1−α0)N/2 as N →∞, yet γ(ρ/2) is a constant.

Proof of Lemma 3.5. We begin by verifying the feasibility of the solution to dual-LP-SI. Clearly,
∑N

i=1
ξ(i)
N = (N−1)ρα0

N + (1− ρα0
N−1
N ) = 1, so (3.12) is satisfied (at equality). We next verify (3.11)

for σ = f. If i = n + 1, then this is immediate, since yf(n + 1) ≥ ξ(n + 1)/2. For i ≥ n + 2, recall
that yf(i) := γ(ρi/N). Now, since γ is an increasing function,

N
∑

j=i

yf(j)

N
=

N
∑

j=i

ρ · γ(ρj/N)

N
≥
∫ ρ

ρ(i−1)/N
γ(τ)dτ, (3.18)

where we’ve interpreted
∑N

j=i
ρ·γ(ρj/N)

N as a right endpoint Riemann sum. By applying (3.18),

yf(i) +

N
∑

j=i+1

ρ · yf(j)
N

≥ γ(ρi/N) +

∫ ρ

ρi/N
γ(τ)dτ =

ρα0

2
=

ξ(i)

2
,

where the final equality applies (3.17) of Proposition 3.6, and the definition of ξ(i) for i > n + 1.
Thus, (3.11) is satisfied for i > n + 1. Finally, for i < n, we know that yf(i) = 0, and ξ(i) = ρα0.
On the other hand, observe that α0 satisfies

1− α0ρ = α0e
−ρ/2, (3.19)

and so ρ(1−α0ρ)
2 = α0ρ

2 e−ρ/2 = γ(ρ/2). More, since yf(n+1)
N ≥ 1−α0ρ

2 + 1
2N , we get that

ρ · yf(n + 1)

N
≥ γ(ρ/2) +

ρ

2N
≥ γ(ρ/2) +

∫ ρ(n+1)/N

ρ/2
γ(τ)dτ, (3.20)

where the final inequality uses that γ(τ) ≤ 1 on [ρ/2, ρ(n + 1)/N ]. By applying (3.20) followed by
(3.18),

ρ · yf(n + 1)

N
+

N
∑

j=n+2

ρ · yf(j)
N

≥ γ(ρ/2) +

∫ ρ(n+1)/N

ρ/2
γ(τ)dτ +

N
∑

j=n+2

ρyf(j)

N

≥ γ(ρ/2) +

∫ ρ(n+1)/N

ρ/2
γ(τ)dτ +

∫ ρ

ρ(n+1)
N

γ(τ)dτ

= γ(ρ/2) +

∫ ρ

ρ
2

γ(τ)dτ =
ρα0

2
=

ξ(i)

2
,

where the last two equalities use Proposition 3.6 and the definition of ξ(i) for i < n. Thus, (3.11)
holds for i < n. Due to the symmetry of (yb(i))Ni=1, we know that (3.11) also holds for σ = b.

It remains to bound the value of the feasible solution. Now, using that yf(i) = yb(N − (i− 1))
for i ∈ [N ], and yf(i) = 0 for i < n,

N
∑

i=1

(yf(i) + yb(i))

N
=

2yf(n + 1)

N
+ 2

N
∑

i=n+2

yf(i)

N
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=

(

1− ρ · α0
N − 1

N

)

+
1

N
+

2

ρ

N
∑

i=n+2

ρ · yf(i)
N

, (3.21)

where the second equality uses yf(n + 1) = yb(n + 1) =
(

1− ρ · α0
(N−1)

N

)

N
2 + 1

2 . Since γ is

1-Lipschitz by Proposition 3.6,

N
∑

i=n+2

ρ · yf(i)
N

=
N
∑

i=n+2

ρ · γ(ρ(i− 1)/N)

N
+

N
∑

i=n+2

(

ρ · γ(ρi/N)

N
− ρ · γ(ρ(i − 1)/N)

N

)

≤
N
∑

i=n+2

ρ · γ(ρ(i− 1)/N)

N
+

ρ

N

≤
∫ s

ρ/2
γ(τ)dτ +

ρ

N
, (3.22)

where the final inequality uses that γ is increasing, and interprets
∑N

i=n+2
ρ·γ(ρ(i−1)/N)

N as a left

endpoint Riemann sum. Combining (3.21) with (3.22), and using 2
ρ

∫ ρ
ρ/2 γ(τ)dτ = α0−α0e

−ρ/2 due
to Proposition 3.6,

N
∑

i=1

(yf(i) + yb(i))

N
≤ 1− ρ · α0

N − 1

N
+

2

ρ

∫ ρ

ρ/2
γ(τ)dτ +

2

N

= 1− ρ · α0
N − 1

N
+ α0 − α0e

−ρ/2 +
2

N

= α0 + (1− ρ · α0 − α0e
−ρ/2) +

ρ · α0 + 2

N
≤ α0 +

ρ + 2

N
,

where the final inequality uses (3.19) and that α0 ≤ 1. The proof is thus complete.

4 Details of Knapsack FB-CRS Results

4.1 Knapsack FB-CRS Positive Result: Proving Theorem 1.4

Given a knapsack input (n, (Fi)
n
i=1), recall that Fi is a distribution on [0, 1] ∪ {∞}, and Si ∼ Fi is

the random size of element i. If µi := E[Si · 1(Si <∞)] for each i ∈ [n], then we may assume that
∑n

i=1 µi = 1 and µi > 0 for each i ∈ [n].
Our high level approach to proving Theorem 1.4 is closely related to how we designed our single-

unit FB-CRS from Section 3. Specifically, let (cf(i), cb(i))ni=1 be a collection of probabilities. Our
goal is to define an FB-CRS with respect to (cf(i), cb(i))ni=1, such that if Ai denotes the indicator
random variable for the event that i is accepted, then Pr[Ai | Si = s,Λ = σ] = cσ(i), for each
σ ∈ {f, b}, i ∈ [n], and s ∈ [0, 1]. By averaging over Λ, this will imply a selection guarantee of
min1≤i≤n(cf(i) + cb(i))/2 is attainable. Unlike the single-unit setting, our probabilities will not
come from an LP. However, we still must ensure that (cf(i), cb(i))ni=1 satisfy certain inequalities.
For convenience, we denote i1 := σ−1(1) ∈ {1, n} to be the first element with respect to σ:

Definition 5. We refer to probabilities (cf(i), cb(i))ni=1 as feasible for (n, (Fi)
n
i=1) provided:

1. For each 1 ≤ i ≤ n− 1, cf(i + 1) ≤ cf(i), and cb(i) ≤ cb(i + 1).
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2. For each i ∈ [n], and σ ∈ {f, b}:

cσ(i) ≤ 1− cσ(i1)−
∑

j<σi

cσ(j) · µj ; (4.1)

cσ(i) ≤ 1− 2
∑

j<σi

cσ(j) · µj − cσ(i1) · exp





−2

cσ(i1)

∑

j<σi

cσ(j) · µj



 . (4.2)

We now define our FB-CRS (Algorithm 3, formally written on the next page) with respect to
an arbitrary choice of feasible probabilities. Afterwards, we shall construct a choice of feasible
probabilities that implies the claimed selection guarantee of Theorem 1.4. This second step is
analogous to the approach taken in Subsection 3.1.

Let us condition on Λ = σ for σ ∈ {f, b} and Si = si ∈ [0, 1] for i ∈ [n]. Our FB-CRS is defined
recursively with respect to the permutation σ. That is, assuming we’ve defined the algorithm for
all elements j <σ i, we extend its definition to the current arrival i. In order to do so, denote
Tσ(i) :=

∑

j<σi
Sj · Aj, where Tf(1) := 0 and Tb(n) := 0 (recall that Aj is an indicator random

variable for the event that j is accepted). Observe that since Tσ(i) depends on the elements j <σ i,
the probabilities Pr[Tσ(i) = 0 | Λ = σ] and Pr[0 < Tσ(i) ≤ 1− si | Λ = σ] are well-defined. Further
note that Pr[Tσ(i1) = 0 | Λ = σ] = 1 and Pr[0 < Tσ(i1) ≤ 1− si1 | Λ = σ] = 0.

Our FB-CRS will again use a random bit Bσ(i) to decide whether to accept i; however this
bit will now depend on the value of Tσ(i) in the current execution of the FB-CRS. Specifically, if
0 < Tσ(i) ≤ 1− si, then

Bσ(i) ∼ Ber

(

min

(

1,
cσ(i)

Pr[0 < Tσ(i) ≤ 1− si | Λ = σ]

))

. (4.3)

Else if Tσ(i) = 0 and cσ(i) > Pr[0 < Tσ(i) ≤ 1− si | Λ = σ], then

Bσ(i) ∼ Ber

(

min

(

1,
cσ(i) − Pr[0 < Tσ(i) ≤ 1− si | Λ = σ]

Pr[Tσ(i) = 0 | Λ = σ]

))

. (4.4)

Otherwise, we pass on i (i.e., Bσ(i) = 0).
As we shall argue in Lemma 4.2, if a certain induction hypothesis holds, then the minimum in

(4.4) is unnecessary, and so (4.3) and (4.4) are calibrated to ensure that

Pr[Ai | Si = si,Λ = σ] = cσ(i). (4.5)

Roughly speaking, we maintain this induction hypothesis for the next arriving element by prior-
itizing the acceptance of i on executions when Tσ(i) > 0, and Tσ(i) + si ≤ 1. More precisely, if
cσ(i) ≤ Pr[0 < Tσ(i) ≤ 1 − si | Λ = σ], then we accept i only if 0 < Tσ(i) ≤ 1 − si. On the other
hand, if cσ(i) > Pr[0 < Tσ(i) ≤ 1− si | Λ = σ] then we greedily accept i when 0 < Tσ(i) ≤ 1− si,
and otherwise accept it when Tσ(i) = 0 only as much as needed to ensure that (4.5) holds.

Remark 7. In Algorithm 3, computing Pr[Tσ(i) = 0 | Λ = σ] and Pr[0 < Tσ(i) ≤ 1 − si | Λ = σ]
exactly requires tracking exponentially many scenarios. However, this can be avoided by using
random sampling in a similar way as discussed in Remark 3. One could also use a discretization
argument for knapsack [JMZ22].

Theorem 4.1. Suppose Algorithm 3 is defined using feasible selection values (cf(i), cb(i))ni=1 for
(n, (Fi)

n
i=1. Then, for each σ ∈ {f, b}, i ∈ [n] and si ∈ [0, 1], Pr[Ai | Si = si,Λ = σ] = cσ(i).
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Algorithm 3 Knapsack FB-CRS

Input: knapsack input (n, (Fi)
n
i=1) which satisfies

∑n
i=1 µi ≤ 1.

Output: a subset of elements I ⊆ [n] with
∑

i∈I Si ≤ 1.
1: I ← ∅.
2: Observe realized permutation Λ and call it σ
3: for i ∈ [n] arriving in increasing order of σ with Si = si ∈ [0, 1] do
4: Set Tσ(i) :=

∑

j<σi
Sj ·Aj .

5: Based on the algorithm’s execution on the elements j <σ i, compute Pr[Tσ(i) = 0 | Λ = σ]
and Pr[0 < Tσ(i) ≤ 1− si | Λ = σ].

6: if 0 < Tσ(i) ≤ 1− si then

7: Draw Bσ(i) ∼ Ber

(

min

(

1,
cσ(i)

Pr[0 < Tσ(i) ≤ 1− si | Λ = σ]

))

.

8: else if Tσ(i) = 0 and cσ(i) > Pr[0 < Tσ(i) ≤ 1− si | Λ = σ] then

9: Draw Bσ(i) ∼ Ber

(

min

(

1,
cσ(i) − Pr[0 < Tσ(i) ≤ 1− si | Λ = σ]

Pr[Tσ(i) = 0 | Λ = σ]

))

.

10: else
11: Bσ(i) = 0.

12: if Bσ(i) = 1 then I ← I ∪ {i}. ⊲ If Bσ(i) = 1, then si + Tσ(i) ≤ 1.

13: return I.

In order to prove Theorem 4.1, we define the following induction hypothesis:

1. For each σ ∈ {f, b} and i ∈ [n], for all 0 < b ≤ 1/2,

Pr[0 < Tσ(i) ≤ b | Λ = σ]

cσ(i1)
≤ exp

(

−Pr[b < Tσ(i) ≤ 1− b | Λ = σ]

cσ(i1)

)

; (4.6)

2. For each σ ∈ {f, b} and i ∈ [n],

Pr[Tσ(i) = 0 | Λ = σ] ≥ cσ(i). (4.7)

The following lemma shows that if element i satisfies (4.7), then the minimum of the Bernoulli
parameter in line 9 of Algorithm 3 is unnecessary, and so Algorithm 3 accepts i as specified in
Theorem 4.1. This would complete the proof of Theorem 4.1.

Lemma 4.2. Fix σ ∈ {f, b}. If (4.7) holds for i ∈ [n], then for each si ∈ [0, 1],

1.
cσ(i)− Pr[0 < Tσ(i) ≤ 1− si | Λ = σ]

Pr[Tσ(i) = 0 | Λ = σ]
≤ 1; (4.8)

2.
Pr[Ai | Si = si,Λ = σ] = cσ(i). (4.9)

Proof of Lemma 4.2. Observe first that,

Pr[0 < Tσ(i) ≤ 1− si | Λ = σ] + Pr[Tσ(i) = 0 | Λ = σ] = Pr[Tσ(i) ≤ 1− si | Λ = σ]

≥ Pr[Tσ(i) = 0 | Λ = σ]

22



≥ cσ(i),

where the last inequality follows by the assumption (4.7) for i. Thus, we can now subtract the term
Pr[0 < Tσ(i) ≤ 1 − si | Λ = σ] from both sides, and then divide by Pr[Tσ(i) = 0 | Λ = σ] to get
(4.8).

Let us now implicitly condition on Λ = σ and Si = si for the remainder of the proof. Observe
then that Ai occurs if and only if {0 < Tσ(i) ≤ 1− si} ∩ {Bσ(i) = 1} or {Tσ(i) = 0} ∩ {Bσ(i) = 1}.
Since the latter are disjoint events,

Pr[Ai | Si = si,Λ = σ] = Pr[{0 < Tσ(i) ≤ 1− si} ∩ {Bσ(i) = 1} | Si = si,Λ = σ]

+ Pr[{Tσ(i) = 0} ∩ {Bσ(i) = 1} | Si = si,Λ = σ].
(4.10)

In order to simplify (4.10), we first consider the case when cσ(i) ≤ Pr[0 < Tσ(i) ≤ 1 − si | Λ = σ].
Observe then that by the definition of Bσ(i), for each di ∈ [0, 1 − si],

Pr[Bσ(i) = 1 | Λ = σ, Si = si,Tσ(i) = di] =











cσ(i)

Pr[0 < Tσ(i) ≤ 1− si | Λ = σ]
if 0 < di ≤ 1− si.

0 if di = 0.

(4.11)
Thus, by applying (4.11) to the RHS of (4.10), we can write Pr[Ai | Si = si,Λ = σ] as:

Pr[0 < Tσ(i) ≤ 1− si | Λ = σ, Si = si] · Pr[Bσ(i) = 1 | Λ = σ, Si = si, 0 < Tσ(i) ≤ 1− si]

=
cσ(i)

Pr[0 < Tσ(i) ≤ 1− si | Λ = σ]
· Pr[0 < Tσ(i) ≤ 1− si | Λ = σ] = cσ(i),

and so (4.9) holds. It remains to consider the case when cσ(i) > Pr[0 ≤ Tσ(i) > 1 − si | Λ = σ].
Since we’ve already proven (4.8), by the definition of Bσ(i) we know that for each di ∈ [0, 1 − si],

Pr[Bσ(i) = 1 | Λ = σ, Si = si,Tσ(i) = di] =











1 if 0 < di ≤ 1− si.

cσ(i)− Pr[0 < Tσ(i) ≤ 1− si | Λ = σ]

Pr[Tσ(i) = 0 | Λ = σ]
if di = 0.

(4.12)
By applying (4.12) to the RHS side of (4.10), we can write Pr[Ai | Si = si,Λ = σ] as

Pr[0 < Tσ(i) ≤ 1− si | Λ = σ, Si = si]

+

(

cσ(i)− Pr[0 < Tσ(i) ≤ 1− si | Λ = σ]

Pr[Tσ(i) = 0 | Λ = σ]

)

· Pr[Tσ(i) = 0 | Λ = σ] = cσ(i),

and so (4.9) holds. The proof is thus complete.

For the induction hypothesis, we now discuss how (4.6) relates to (4.7). By Lemma 4.2, to
establish the guarantee of Theorem 4.1, it suffices to prove (4.7) or equivalently Pr[0 < Tσ(i) ≤
1 | Λ = σ] ≤ 1 − cσ(i). On the other hand, as we shall see in our inductive argument, we can
apply Lemma 4.2 to write E[Tσ(i) | Λ = σ] =

∑

j<σi
cσ(j)µj . By rewriting E[Tσ(i) | Λ = σ] using

integration by parts, we get the following:

∑

j<σi

cσ(j)µj = E[Tσ(i) | Λ = σ] = Pr[0 < Tσ(i) ≤ 1 | Λ = σ]−
∫ 1

0
Pr[0 < Tσ(i) ≤ τ | Λ = σ]dτ.

(4.13)
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We shall use (4.6) to upper-bound the integral in (4.13), which combined with Definition 5, will allow
us to prove Pr[0 < Tσ(i) ≤ 1 | Λ = σ] ≤ 1− cσ(i) as desired. In this way, we can roughly interpret
(4.6) as an anti-concentration inequality: it controls the amount of mass Tσ(i) can have away from
0. Our formal induction argument establishing (4.6) and (4.7) is deferred to Appendix C.1.

Having verified (4.7) and (4.6) for all i ∈ [n] and σ ∈ {f, b}, Lemma 4.2 immediately implies
Theorem 4.1. We now construct a specific choice of feasible (cf(i), cb(i))ni=1 which implies the
selection guarantee claimed in Theorem 1.4. As in the single-unit case, we first describe a continuous
function φ : [0, 1]→ [0, 1] to help us describe our solution. Specifically, for each z ∈ [0, 1],

φ(z) :=
4

9
− 2z

9
. (4.14)

Proposition 4.3 (proof in Appendix C.2). Function φ defined in (4.14) satisfies the following:

1. φ is decreasing and continuous on [0, 1].

2. For each z ∈ [0, 1]:

φ(z) + φ(1 − z)

2
=

1

3
(4.15)

φ(z) ≤ 1− φ(0) −
∫ z

0
φ(τ)dτ (4.16)

φ(z) ≤ 1− 2

∫ z

0
φ(τ)dτ − φ(0) · exp

( −2

φ(0)

∫ z

0
φ(τ)dτ

)

. (4.17)

Remark 8. Properties (4.16) and (4.17) correspond to (4.1) and (4.2) of Definition 5 for an input
with max1≤i≤n µi → 0. Thus, we can interpret (φ(z), φ(1 − z))0≤z≤1 as a limiting solution of
Definition 5 as max1≤i≤n µi → 0.

For each i ∈ [n] and σ ∈ {f, b}, define µσ(i) :=
∑

j<σi
µj where µf(1) = µb(n) := 0 for

convenience. Using φ, and recalling that
∑n

i=1 µi = 1, we define (cf(i), cb(i))ni=1 in the following
way:

cf(i) :=

∫ µf(i)+µi

µf (i)

φ (τ)

µi
dτ , and cb(i) :=

∫ µb(i)+µi

µb(i)

φ (τ)

µi
dτ. (4.18)

Here we can interpret cσ(i) as the average value of the function φ on the interval [µσ(i), µσ(i) +µi].
As such, cσ(i) agrees exactly with φ for inputs with max1≤i≤n µi → 0. Note that φ is a decreasing
function on [0, 1]. Thus, the further an element i is in the order specified by σ ∈ {f, b}, the smaller
the value of cσ(i). The next lemma proceeds similarly to Lemma 3.3 from Subsection 3.1.

Lemma 4.4 (proof in Appendix C.3). Fix an input (n, (Fi)
n
i=1) with

∑n
i=1 µi = 1 and mini∈[n] µi >

0. Then, (cf(i), cb(i))ni=1 as defined in (4.18) is feasible for (n, (Fi))
n
i=1, and mini∈[n]

cf(i)+cb(i)
2 = 1

3 .

Theorem 1.4 now follows easily.

Proof of Theorem 1.4. Lemma 4.4 implies that (cf(i), cb(i))ni=1 as defined in (4.18) is feasible for
(n, (Fi)

n
i=1). Thus, by using them in Algorithm 3, Theorem 4.1 implies that for each σ ∈ {f, b},

i ∈ [n] and si ∈ [0, 1], Pr[Ai = 1 | Λ = σ, Si = si] = cσ(i). As such, since Λ is uniformly
distributed on {f, b}, Algorithm 3 is mini∈[n](cf(i) + cb(i))/2-selectable. Since Lemma 4.4 ensures

mini∈[n]
cf(i)+cb(i)

2 = 1
3 , the proof is complete.
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4.2 Knapsack FB-CRS Hardness Result: Proving Theorem 1.5

In order to prove Theorem 1.5, for each n ∈ N, we set ρ = 2n/(n + 2), and consider the knapsack
input (2n + 1, (Fi)

2n+1
i=1 ), where Si ∈ {1/2 + 1/n,∞} and Pr[Si = 1/2 + 1/n] = ρ/(2n + 1) for

each i ∈ [2n + 1]. Instead of directly trying to analyze the performance of a knapsack FB-CRS on
(2n + 1, (Fi)

2n+1
i=1 ), we consider the single-unit input (2n + 1,x), where xi = ρ/(2n + 1) for each

i ∈ [2n + 1], and make the following observation.

Proposition 4.5. There exists an α-selectable knapsack FB-CRS for (2n+1, (Fi)
2n+1
i=1 ) if and only

if there exists an α-selectable single-unit FB-CRS for (2n + 1,x).

Proof of Proposition 4.5. Since the support of each Fi is {1/2 + 1/n,∞}, and 1/2 + 1/n > 1/2, at
most one element can be accepted by any knapsack FB-CRS. The claim thus follows immediately.

Using this observation, we can now apply our negative results from Section 3, namely Lemma 3.1
and Theorem 3.4, to derive Theorem 1.5.

Proof of Theorem 1.5. It suffices to upper bound the selection guarantee of an arbitrary single-unit
FB-CRS on (2n + 1,x). Now, by applying Lemma 3.1 to (2n + 1,x), we know that no single-unit
FB-CRS can attain a selection guarantee greater than LPOPT(2n + 1,x). However, (2n + 1,x) is
precisely the input described in Theorem 3.4 for the parameter ρ, and so we know that

LPOPT(2n + 1,x) ≤ exp(ρ/2)

1 + exp(ρ/2)ρ
+

ρ + 2

2n + 1
= (1 + o(1))

1

2 + e−1
,

where the asymptotics hold since ρ→ 2 as n→∞. The proof is thus complete.

References

[ACK18] Yossi Azar, Ashish Chiplunkar, and Haim Kaplan, Prophet secretary: Surpassing the
1-1/e barrier, Proceedings of the 2018 ACM Conference on Economics and Compu-
tation (New York, NY, USA), EC ’18, Association for Computing Machinery, 2018,
p. 303–318.

[ADK21] Makis Arsenis, Odysseas Drosis, and Robert Kleinberg, Constrained-order prophet
inequalities, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), SIAM, 2021, pp. 2034–2046.

[AK22] Makis Arsenis and Robert Kleinberg, Individual fairness in prophet inequalities, Pro-
ceedings of the 23rd ACM Conference on Economics and Computation, 2022, pp. 245–
245.

[Ala14] Saeed Alaei, Bayesian combinatorial auctions: Expanding single buyer mechanisms to
many buyers, SIAM Journal on Computing 43 (2014), no. 2, 930–972.

[AW18] Marek Adamczyk and Micha l W lodarczyk, Random order contention resolution
schemes, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), IEEE, 2018, pp. 790–801.

25



[BC23] Archit Bubna and Ashish Chiplunkar, Prophet inequality: Order selection beats ran-
dom order, Proceedings of the 24th ACM Conference on Economics and Computa-
tion (New York, NY, USA), EC ’23, Association for Computing Machinery, 2023,
p. 302–336.

[BGS19] Santiago R Balseiro, Huseyin Gurkan, and Peng Sun, Multiagent mechanism design
without money, Operations Research 67 (2019), no. 5, 1417–1436.

[BHS23] Siddhartha Banerjee, Chamsi Hssaine, and Sean R Sinclair, Online fair allocation of
perishable resources, ACM SIGMETRICS Performance Evaluation Review 51 (2023),
no. 1, 55–56.

[BJN97] Salvador Barberà, Matthew O Jackson, and Alejandro Neme, Strategy-proof allotment
rules, Games and Economic Behavior 18 (1997), no. 1, 1–21.

[BMMP24] Kshipra Bhawalkar, Marios Mertzanidis, Divyarthi Mohan, and Alexandros Psomas,
Mechanism design via the interim relaxation, arXiv preprint arXiv:2407.12699 (2024).

[BYDH19] Robert L Bray, Yuliang Yao, Yongrui Duan, and Jiazhen Huo, Ration gaming and the
bullwhip effect, Operations Research 67 (2019), no. 2, 453–467.

[CCDNF21] Jose Correa, Andres Cristi, Paul Duetting, and Ashkan Norouzi-Fard, Fairness and
bias in online selection, International conference on machine learning, PMLR, 2021,
pp. 2112–2121.
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A Additions to Section 2

A.1 Proof of Lemma 2.1

Let βi = E[si(Yi,Di)] for all i. We set qi to the smallest value in [0,1] that makes (2.2) hold. To
see that such a value exists, note that if qi = 1, then the left-hand side (LHS) of (2.2) equals
E[si(min{Di, 1},Di)], which is an upper bound on E[si(Yi,Di)] = βi as Yi ≤ min{Di, 1}. The LHS
of (2.2) continuously decreases to 0 as qi decreases from 1 to 0, and hence this value of qi exists.
Under this definition of qi, we now prove that

E[Yi] ≥
∫ qi

0
min{F−1

i (q), 1}dq, (A.1)

which will help us establish (2.1).
If si is the Type-I service function, then (2.2) implies βi ≤ min{qi, Fi(1)} (see (2.3)). However in

this case we know qi ≤ Fi(1) by virtue of qi being the smallest value that satisfies (2.2) (increasing
qi beyond Fi(1) does increase the LHS of (2.2), under Type-I service). We derive

E[Yi] ≥ E[1(Yi = Di)Di] ≥
∫ Pr[Yi=Di]

0
F−1
i (q)dq

by the optimality of monotone coupling between 1(Yi = Di) and demand Di being small. Using
the facts that Pr[Yi = Di] = βi = qi and that F−1

i (q) ≤ 1 for all q below this qi, the right-hand side
(RHS) of the preceding equation equals

∫ qi
0 min{F−1

i (q), 1}dq, establishing (A.1).

If si is the Type-II service function, then (2.2) implies
∫ qi
0 (min{F−1

i (q), 1}/µi)dq = βi =
E[Yi]/µi, which immediately establishes (A.1) as equality.

If si is the Type-III service function, then we have

βi = E[
Yi

Di
] =

∫ 1

0

E[Yi | Qi = q]

F−1
i (q)

dq ≤
∫ q′i

0

min{F−1
i (q), 1}

F−1
i (q)

dq

where q′i is such that
∫ q′i
0 min{F−1

i (q), 1}dq = E[Yi]. This again follows by optimality of monotone

coupling between the distributions Yi and Di: the coefficient 1/F−1
i (q) is maximized when q is

small, and hence we also want E[Yi | Qi = q] to be maximized when q is small, subject to E[Yi |
Qi = q] ≤ F−1

i (q) and E[Yi | Qi = q] ≤ 1. Now, because βi =
∫ qi
0

min{F−1
i (q),1}

F−1
i (q)

dq, we deduce that

q′i ≥ qi. But then E[Yi] ≥
∫ qi
0 min{F−1

i (q), 1}dq, establishing (A.1).
Having established (A.1) for all three types of service, we now use the fact that

∑n
i=1 Yi ≤ 1 on

every sample path, and take linearity of expectation. We get

1 ≥
n
∑

i=1

E[Yi] ≥
n
∑

i=1

∫ qi

0
min{F−1

i (q), 1}dq,

which establishes (2.1) as desired.

B Additions to Section 3

B.1 Proof of Lemma 3.1

Recall that Ai is an indicator random variable for the event that i ∈ [n] is accepted by Algorithm 2.
Our goal is to show that for each i ∈ [n] and σ ∈ {f, b},

Pr[Ai = 1 | Si = 1,Λ = σ] = cσ(i). (B.1)

31



We first prove (B.1) for σ = f using induction on the elements of [n]. Observe first that for i = 1,
if we condition on Λ = f and S1 = 1, then element 1 is accepted if and only if Bf(1) = 1. Thus,

Pr[A1 = 1 | S1 = 1,Λ = f] = Pr[Bf(1) = 1 | Λ = f] = cf(1).

For σ = f and i > 1, let us now assume that (B.1) holds for all j < i. Observe then that since at
most one element is accepted by Algorithm 2,

Pr[∪j<i{Aj = 1} | Λ = f] =
∑

j<i

cf(j) · xj. (B.2)

On the other hand, conditional on Si = 1 and Λ = f, i is accepted if and only if ∩j<i{Aj = 0} and
Bf(i) = 1. Since conditional on Λ = f, Bf(i) is independent of (Aj)j<i and Si, we have that

Pr[Ai = 1 | Si = 1,Λ = f] = Pr[Bf(i) = 1 | Λ = f] · (1− Pr[∪j<i{Aj = 1} | Λ = f])

=
cf(i)

1−∑j<i xj · cf(j)
·



1−
∑

j<i

xj · cf(j)





= cf(i),

where the second equality follows from (B.2). Thus, (B.1) holds for σ = f for all i ∈ [n]. We
omit the case when σ = b, as the argument proceeds identically. Using (B.1), and the fact that
Pr[Λ = f] = Pr[Λ = b] = 1/2, we have that for each i ∈ [n],

Pr[Ai = 1 | Si = 1] = (cf(i) + cb(i))/2.

The selection guarantee of Algorithm 2 is therefore min1≤i≤n(cf(i) + cb(i))/2 = LPOPT(n,x).
Suppose now that we have an arbitrary FB-CRS for (n,x). Let us first set cσ(i) := Pr[Ai = 1 |

Si = 1,Λ = σ] for each i ∈ [n] and σ ∈ {f, b}, where Ai is the indicator random variable for the
event the FB-CRS accepts i. Observe then that since Λ is distributed uniformly on {f, b},

Pr[Ai = 1 | Si = 1] = (cf(i) + cb(i))/2,

Thus, the selection guarantee of the FB-CRS is min1≤i≤n(cf(i) + cb(i))/2. To complete the proof,
it suffices to show that (cf(i), cb(i))ni=1 is a feasible solution to LP-SI.

Clearly, (cf(i), cb(i))ni=1 is non-negative. Now, fix i ∈ [n] and condition on Λ = σ and Si = 1.
Observe that if i is accepted, then no j ∈ [n] with σ(j) < σ(i) could have previously been accepted.
Thus,

cσ(i) = Pr[Ai = 1 | Si = 1,Λ = σ] ≤ 1− Pr[∪j<σi{Aj = 1} | Λ = σ, Si = 1]

= 1−
∑

j<σi

Pr[Aj = 1 | Λ = σ, Si = 1]

= 1−
∑

j<σi

Pr[Aj = 1 | Λ = σ]

= 1−
∑

j<σi

cσ(j) · xj.

Here the first equality uses that at most one element can be accepted, the second uses that Si is
independent of Aj (conditional on Λ = σ), and the final uses the definition of cσ(j). Thus, (3.1)
holds, and so the proof is complete.
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B.2 Proof of Proposition 3.2

Denote α0 = exp(ρ/2)
1+exp(ρ/2)ρ , and recall that φ : [0, ρ]→ [0, 1], where for z ∈ [0, ρ],

φ(z) :=

{

2eρ/2−ez

1+eρ/2ρ
if z ≤ ρ/2,

eρ−z

1+eρ/2ρ
if ρ/2 < z ≤ ρ.

(B.3)

We verify the properties of Proposition 3.2 in order. Since limz→(ρ/2)− φ(z) = limz→(ρ/2)+ φ(z) = α0,
it is clear that φ is continuous. More, its derivative on [0, ρ/2) and (ρ/2, ρ] is negative, so it is
decreasing.

Now, we already know (φ(z) + φ(ρ− z))/2 = α0 for z = ρ/2. Observe that for any z ∈ [0, ρ/2),
ρ/2 < ρ− z ≤ ρ, and so

φ(z) + φ(ρ− z)

2
=

1

2

(

2eρ/2 − ez

1 + eρ/2ρ
+

eρ−(ρ−z)

1 + eρ/2ρ

)

=
exp(ρ/2)

1 + exp(ρ/2)ρ
= α0.

The same applies for z > ρ/2, due to the symmetry of (B.3). Next, observe that for z ≤ ρ/2,

φ(z) +

∫ z

0
φ(τ)dτ =

2eρ/2 − ez

1 + eρ/2ρ
+

1− ez + 2eρ/2z

1 + eρ/2ρ
=

1− 2ez + 2eρ/2(1 + z)

1 + eρ/2ρ
≤ 1,

where the inequality follows since the maximum of the function of z on the LHS occurs at z = ρ/2
(where it in fact takes a value of 1). Finally, for z > ρ/2,

φ(z) +

∫ ρ/2

0
φ(τ)dτ +

∫ z

ρ/2
φ(τ)dτ =

eρ−z

1 + eρ/2ρ
+

eρ/2 − eρ−z

1 + eρ/2ρ
+

1 + eρ/2(ρ− 1)

1 + eρ/2ρ
= 1.

Thus, the proof is complete.

B.3 Single-unit LP Duality Details

We first state LP-SI as a linear program in standard form by introducing an additional variable β,
and rearranging the inequalities:

maximize β (LP-SI-A)

subject to β − (cf(i) + cb(i))/2 ≤ 0 ∀i ∈ [n]

cσ(i) +
∑

j<σi

xj · cσ(j) ≤ 1 ∀i ∈ [n], σ ∈ {f, b}

cσ(i) ≥ 0 ∀i ∈ [n], σ ∈ {f, b}

After taking its dual, we get the following:

minimize

N
∑

i=1

(yf(i) + yb(i))

subject to yσ(i) +
∑

j>σi

ρ · yσ(j)

N
− ξ(i)

2
≥ 0 ∀i ∈ [N ], σ ∈ {f, b}

N
∑

i=1

ξ(i) ≥ 1
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ξ(i), yf(i), yb(i) ≥ 0 ∀i ∈ [n].

By scaling a solution to this dual up by N , we can write it in the following way, as presented in
dual-LP-SI of Subsection 3.2:

minimize
N
∑

i=1

(yf(i) + yb(i))

N

subject to yσ(i) +
∑

j>σi

ρ · yσ(j)

N
− ξ(i)

2
≥ 0 ∀i ∈ [N ], σ ∈ {f, b}

n
∑

i=1

ξ(i)

N
≥ 1

ξ(i), yf(i), yb(i) ≥ 0 ∀i ∈ [N ].

B.4 Proof of Proposition 3.6

Recall that α0 := exp(ρ/2)
1+exp(ρ/2)ρ , and γ(z) := ρ exp(z−ρ/2)

2(1+exp(ρ/2)ρ) . Observe that γ′(z) = γ(z) for z ∈
[ρ/2, ρ], so clearly γ is increasing on [ρ/2, ρ]. More, it is 1-Lipschitz, since maxz∈[ρ/2,ρ] |γ′(z)| =
maxz∈[ρ/2,ρ] |γ(z)| = γ(ρ) = pα0

2 ≤ 1. Finally,

γ(z) +

∫ ρ

z
γ(τ)dτ =

ρα0

2
,

is easily verified for z ∈ [ρ/2, ρ], as γ(z) is the unique solution to the differential equation γ′(z) =
γ(z), with initial condition γ(ρ) = ρα0

2 .

B.5 Splitting Argument

Suppose that (n,x) is an arbitrary input with
∑n

i=1 xi = ρ. Now, if we take any ε > 0, then we

claim that there exists an input (ñ, x̃) with x̃i ≤ ε for all i ∈ [ñ],
∑ñ

i=1 x̃i = ρ, and

LPOPT(ñ, x̃) ≤ LPOPT(n,x).

In order to prove this, it suffices to prove the following splitting argument. The claim then follows
by applying this lemma a finite number of times.

Lemma B.1 (Splitting Argument). Given an input (n,x) and an index k ∈ [n], construct an input
(n + 1, x̃), where x̃i := xi for 1 ≤ i < k, x̃k = x̃k+1 := xk/2, and x̃i := xi−1 for k + 1 < i ≤ n + 1.
Then,

∑n+1
i=1 x̃i =

∑n
i=1 xi, and LPOPT(n + 1, x̃) ≤ LPOPT(n,x).

Proof. Given (n + 1, x̃), suppose that (c̃f(i), c̃b(i))n+1
i=1 is an optimal solution to LP-SI. For input

(n,x), we shall construct a feasible solution (cf(i), cb(i))ni=1 to LP-SI such that

min
1≤i≤n

(cf(i) + cb(i)) ≥ min
1≤i≤n+1

(c̃f(i) + c̃b(i)). (B.4)

This will complete the proof, as the feasibility implies that LPOPT(n,x) ≥ min1≤i≤n(cf(i) +
cb(i))/2, and so combined with (B.4),

LPOPT(n,x) ≥ min
1≤i≤n

(cf(i) + cb(i))/2 ≥ min
1≤i≤n+1

(c̃f(i) + c̃b(i))/2 = LPOPT(n + 1, x̃).
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For each σ ∈ {f, b}, we define cσ(i) based on the following cases:

cσ(i) :=











c̃σ(i) if i < k,

(c̃σ(k) + c̃σ(k + 1))/2 if i = k,

c̃σ(i + 1) if k < i ≤ n.

(B.5)

First observe that

cf(i) + cb(i) =

{

c̃f(i) + c̃b(i) if i < k,

c̃f(i + 1) + c̃b(i + 1) if k < i ≤ n.
(B.6)

On the other hand,

cf(k) + cb(k) = (c̃f(k) + c̃f(k + 1))/2 + (c̃b(k) + c̃b(k + 1))/2

= (c̃f(k) + c̃b(k + 1))/2 + (c̃f(k) + c̃b(k + 1))/2

≥ min{c̃f(k) + c̃b(k + 1), c̃f(k) + c̃b(k + 1)}. (B.7)

Thus, (B.6) and (B.7) immediately imply (B.4).
We shall now argue that (cf(i), cb(i))ni=1 is a feasible solution to LP-SI. We focus on verifying

(3.1) of LP-SI for σ = f, as the case of σ = b proceeds identically. First observe that since
(c̃f(i), c̃b(i))n+1

i=1 is a feasible solution to LP-SI, we have that for all i ∈ [n + 1],

c̃f(i) +
∑

j<i

c̃f(j)x̃j ≤ 1 (B.8)

Now, for i < k, cf(i) +
∑

j<i cf(j)xj = c̃f(i) +
∑

j<i c̃f(j)x̃j , so (3.1) of LP-SI immediately holds due
to (B.8). For i = k, we first observe that since cf(k) = (c̃f(k) + c̃f(k + 1))/2,

cf(k) ≤ max{c̃f(k), c̃f(k + 1)},
and so cf(k) ≤ c̃f(k) or cf(k) ≤ c̃f(k + 1). We handle both cases separately. If cf(k) ≤ c̃f(k), then

cf(k) +
∑

j<k

cf(j)xj = cf(k) +
∑

j<k

c̃f(j)x̃j ≤ c̃f(k) +
∑

j<k

c̃f(j)x̃j ≤ 1,

where the final inequality applies (B.8) with i = k. On the other hand, if cf(k) ≤ c̃f(k + 1), then

cf(k) +
∑

j<k

cf(j)xj = cf(k) +
∑

j<k

c̃f(j)x̃j ≤ c̃f(k + 1) +
∑

j≤k

c̃f(j)x̃j ≤ 1,

where the final inequality applies (B.8) with i = k + 1. It remains to verify the case when i > k.
Observe that since cf(k) = (c̃f(k) + c̃f(k + 1))/2 and x̃k = x̃k+1 = xk/2,

cf(k)xk = c̃f(k)x̃k + c̃f(k + 1)x̃k+1. (B.9)

Thus, using the definition of (cf (j))j≤i,

cf(i) +
∑

j<i

cf(j)xj = c̃f(i + 1) +
∑

j<k

c̃f(j)x̃j + cf(k)xk +
∑

k+1<j≤i

c̃f(j)x̃j

= c̃f(i + 1) +
∑

j<k

c̃f(j)x̃j + c̃f(k)x̃k + c̃f(k + 1)x̃k+1 +
∑

k+1<j≤i

c̃f(j)x̃j

= c̃f(i + 1) +
∑

j≤i

c̃f(j)x̃j ≤ 1,

where the second equality follows by (B.9), and the final inequality applies (B.8). Thus, (cf(i), cb(i))ni=1

is a feasible solution to LP-SI, and so the proof is complete.
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C Additions to Section 4

C.1 Induction Proof

We proceed inductively, beginning with the base case for element i1 = σ−1(1) ∈ {1, n}:

Lemma C.1 (Base Case). Fix σ ∈ {f, b}. Then, (4.6) and (4.7) hold for i1 = σ−1(1).

Proof of Lemma C.1. For σ ∈ {f, b}, we verify (4.6) and (4.7) for i1 = σ−1(1). Observe that for
any 0 < b ≤ 1/2, since Pr[0 < Tσ(i1) ≤ b | Λ = σ] = 0, the LHS of (4.6) is 0, and so (4.6) holds.
Similarly, since Pr[Tσ(i1) = 0 | Λ = σ] = 1 and cσ(i1) ≤ 1 by Definition 5, (4.7) holds.

We now complete the inductive step for (4.6). This is similar to the proof of Lemma 4 in
[JMZ22].

Lemma C.2 (Inductive Step for (4.6)). Fix σ ∈ {f, b} and i ∈ [n] with i1 <σ i. If (4.6) and (4.7)
hold for all j <σ i, then (4.6) holds for i.

Proof of Lemma C.2. Let us condition on Λ = f. We prove the claim for this case, as when Λ = b,
the argument proceeds identically. In order to simplify the notation, we implicitly condition on
Λ = f in all of our computations. More, to be consistent with the indexing in Algorithm 3, we
assume that (4.6) and (4.7) hold for all 1 ≤ j ≤ i, and prove that (4.6) holds for i + 1. Fix
0 < b ≤ 1/2, and observe that due to the induction hypothesis, we know that

Pr[0 < Tf(i) ≤ b]

cf(1)
≤ exp

(

−Pr[b < Tf(i) ≤ 1− b]

cf(1)

)

. (C.1)

In order to extend this to i + 1, we have to consider what happens when Algorithm 3 processes
element i, as this will determine how the distribution of Tf(i + 1) differs from the distribution of
Tf(i). We refer to si ∈ [0, 1] as 0-avoiding, provided cf(i) ≤ Pr[0 < Tf(i) ≤ 1 − si]. Otherwise, if
cf(i) > Pr[0 < Tf(i) ≤ 1− si], then we refer to si as 0-using. Now, recalling the definition of Bf(i)
from Algorithm 3, we know that if si is 0-avoiding, then

Pr[Bf(i) = 1 | 0 < Tf(i) ≤ 1− si] =
cf(i)

Pr[0 < Tf(i) ≤ 1− si]
.

Pr[Bf(i) = 1 | Tf(i) = 0] = 0

Otherwise, if si is 0-using, then

Pr[Bf(i) = 1 | 0 < Tf(i) ≤ 1− si] = 1.

Pr[Bf(i) = 1 | Tf(i) = 0] =
cf(i) − Pr[0 < Tf(i) ≤ 1− si]

Pr[Tf(i) = 0]

(Observe that the final fraction is at most 1, since we assumed (4.7) holds for i, and so (4.8) of
Lemma 4.2 applies). Thus, when si is 0-avoiding, we never accept i when Tf(i) = 0. Conversely,
when i is 0-using, there is a non-zero probability that i is accepted when Tf(i) = 0. We further
classify si ∈ [0, 1]:

Si,1 = {si ∈ (0, b] : si is 0-using}
Si,2 = {si ∈ (b, 1 − b] : si is 0-using}
Si,3 = {si ∈ (0, 1 − b] : si is 0-avoiding}
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Si,4 = (1− b, 1] ∪ {0}

Before continuing, we define two functions on [0, 1], whose usage will become clear below:

a1(s) :=

{

Pr[b− s < Tf(i) ≤ b] if s ∈ Si,1.
0 if s ∈ [0, 1] \ Si,1.

(C.2)

a3(s) :=

{

Pr[b−s<Tf(i)≤b]·cf(i)
Pr[0<Tf(i)≤1−s] if s ∈ Si,3.

0 if s ∈ [0, 1] \ Si,3.
(C.3)

(Here (C.3) is well-defined, since cf(i) ≤ Pr[0 < Tf(i) ≤ 1 − s] for s ∈ Si,3). We now upper bound
Pr[0 < Tf(i+ 1) ≤ b | Si = si] and Pr[b < Tf(i+ 1) ≤ 1− b | Si = si] for the various classifications of
si. In the explanations, we implicitly condition on Si = si, which we note is independent of Tf(i).

If si ∈ Si,1: Observe 0 < Tf(i + 1) ≤ b occurs if and only if 0 < Tf(i) ≤ b − si, or {Bf(i) =
1}∩{Tf(i) = 0}. Now, due to the definition of Bf(i) when si is 0-using, this final event occurs with
probability

cf(i)− Pr[0 < Tf(i) ≤ 1− si] ≤ cf(i)− Pr[0 < Tf(i) ≤ 1− b],

where the inequality uses 1−b ≤ 1−si. Similarly, if b < Tf(i+1) ≤ 1−b occurs, then b < Tf(i) ≤ 1−b
or b− si < Tf(i) ≤ b. Thus, using the definition of a1 from (C.2):

Pr[0 < Tf(i + 1) ≤ b | Si = si] ≤ Pr[0 < Tf(i) ≤ b]− a1(si) + (cf(i)− Pr[0 < Tf(i) ≤ 1− b]),

Pr[b < Tf(i + 1) ≤ 1− b | Si = si] ≤ Pr[b < Tf(i) ≤ 1− b] + a1(s).

If si ∈ Si,2: Since b < si ≤ 1− b and si is 0-using, we know that 0 < Tf(i+ 1) ≤ b cannot occur. On
the other hand, b < Tf(i + 1) ≤ 1− b occurs only if 0 < Tf(i) ≤ 1− b, or {Tf(i) = 0} ∩ {Bf(i) = 1}.
Due to the definition of Bf(i) when si is 0-using, this final event occurs with probability

cf(i) − Pr[0 < Tf(i) ≤ 1− si] ≤ cf(i)− Pr[0 < Tf(i) ≤ b],

where the inequality holds since 1− si ≥ b. Thus,

Pr[0 < Tf(i + 1) ≤ b | Si = si] = 0,

Pr[b < Tf(i + 1) ≤ 1− b | Si = si] ≤ Pr[b < Tf(i) ≤ 1− b] + cf(i).

If si ∈ Si,3: Observe 0 < Tf(i + 1) ≤ b occurs if and only if 0 < Tf(i) ≤ b− si, or {b− si < Tf(i) ≤
b} ∩ {Bf(i) = 0}. On the other hand, since si is 0-avoiding, the probability of the latter event is

Pr[b− si < Tf(i) ≤ b] ·
(

1− cf(i)

Pr[0 < Tf(i) ≤ 1− si]

)

.

More, b < Tf(i + 1) ≤ 1 − b occurs only if b < Tf(i) ≤ 1 − b or {b − si < Tf(i) ≤ b} ∩ {Bf(i) = 1}.
Thus, recalling the definition of a3 from (C.3), we have that

Pr[0 < Tf(i + 1) ≤ b | Si = si] ≤ Pr[0 < Tf(i) ≤ b]− a3(si),

Pr[b < Tf(i + 1) ≤ 1− b | Si = si] ≤ Pr[b < Tf(i) ≤ 1− b] + a3(si).

If si ∈ Si,4: Then, since si = 0 or si > 1− b, the relevant probabilities are non-increasing.

Pr[0 < Tf(i + 1) ≤ b | Si = si] ≤ Pr[0 < Tf(i) ≤ b],

Pr[b < Tf(i + 1) ≤ 1− b | Si = si] ≤ Pr[b < Tf(i) ≤ 1− b].
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We now define ã1 := E[a1(Si)], ã3 := E[a3(Si)], and pk := Pr[Si ∈ Si,k] for k ∈ [4]. Using the upper
bounds for Pr[0 < Tf(i + 1) ≤ b | Si = si] and averaging over Si, after simplification we get that:

Pr[0 < Tf(i + 1) ≤ b] ≤ Pr[0 < Tf(i) ≤ b] + (cf(i) − Pr[0 < Tf(i) ≤ 1− b])p1

−ã1 − Pr[0 < Tf(i) ≤ b]p2 − ã3 (C.4)

Similarly, after applying the upper bounds for Pr[b < Tf(i+ 1) ≤ 1− b | Si = si] and averaging over
Si:

Pr[b < Tf(i + 1) ≤ 1− b] ≤ Pr[b < Tf(i) ≤ 1− b] + ã1 + cf(i)p2 + ã3. (C.5)

The remaining computations are mostly algebraic and follow the derivation of Lemma 4 in [JMZ22],
however we sketch the main steps for completeness. Let us first consider when p1 = 0. In this case,
ã1 = 0, and so applied to (C.4), we get that

Pr[0 < Tf(i + 1) ≤ b] ≤ Pr[0 < Tf(i) ≤ b]− Pr[0 < Tf(i) ≤ b]p2 − ã3. (C.6)

Moreover, using ã1 = 0 and cf(i) ≤ cf(1) (due to Definition 5), (C.5) simplifies to

Pr[b < Tf(i + 1) ≤ 1− b] ≤ Pr[b < Tf(i) ≤ 1− b] + cf(1)p2 + ã3 (C.7)

Thus, applying the elementary bounds of 1 − z ≤ exp(−z) and exp(−z) ≤ 1 to (C.7), followed by
(C.1) (our induction hypothesis)

exp

(

−Pr[b < Tf(i + 1) ≤ 1− b]

cf(1)

)

≥ exp

(

−Pr[b < Tf(i) ≤ 1− b]

cf(1)

)

(1− p2)−
ã3

cf(1)
(C.8)

≥ Pr[0 < Tf(i) ≤ b]

cf(1)
(1− p2)−

ã3
cf(1)

. (C.9)

By combining this with (C.6) (after dividing by cf(1)), we have extended (C.1) to i + 1 as desired.
It remains to consider when p1 > 0. Then, since p1 ≤ 1− p2 and cf(i) ≤ cf(1), we can write (C.4)
as

Pr[0 < Tf(i + 1) ≤ b] ≤ (cf(1) − Pr[b < Tf(i + 1) ≤ 1− b])(1 − p2)− ã1 − ã3. (C.10)

Moreover, by using cf(i) ≤ cf(1) and the same elementary bounds as before,

exp

(

−Pr[b < Tf(i + 1) ≤ 1− b]

cf(i)

)

≥ exp

(

−Pr[b < Tf(i) ≤ 1− b]

cf(i)
− p2

)

− ã1
cf(1)

− ã3
cf(1)

≥
(

1− Pr[b < Tf(i) ≤ 1− b]

cf(1)

)

(1− p2)−
ã1

cf(1)
− ã3

cf(1)
.

(C.11)

Thus, after dividing (C.10) by cf(1) and applying (C.11), we have extended (C.1) to i + 1 as
desired.

The next lemma provides the details of how to use (4.6) to simplify the integral in (4.13). This
is essentially the proof of Theorem 5 from [JMZ22]; however we include it for completeness.

Lemma C.3 (Inductive Step for (4.7)). Fix σ ∈ {f, b} and i ∈ [n] with i1 <σ i. If (4.6) and (4.7)
hold for all j <σ i, and (4.6) holds for i, then (4.7) holds for i.
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Remark 9. We can assume that (4.6) holds for i, due to Lemma C.2.

Proof of Lemma C.3. Let us condition on Λ = f. We prove the claim for this case, as when Λ = b,
the argument proceeds identically. For each 0 < τ ≤ 1, define Ui(τ) := Pr[0 < Tf(i) ≤ τ | Λ = f].
In this notation, our goal is to show that

Ui(1) ≤ 1− cf(i). (C.12)

Now, if Ui(1) ≤ cf(1), then since cf(1) ≤ 1−cf(i)−
∑

j<i cf(j) ≤ 1−cf(i) by (4.1) of Definition 5, this
immediately implies (C.12). Thus, for the remainder of the proof, we assume that Ui(1) > cf(1).
In this case, it will be convenient to take u0 ∈ (0, 1) such that

Ui(1) = cf(1)(u0 − log(u0)). (C.13)

First observe that since (4.7) holds for all j < i, we can apply Lemma 4.2 to get E[Tf(i) | Λ = f] =
∑

j<i cf(j)µj . On the other hand, by writing E[Tf(i) | Λ = f] as a Riemann–Stieltjes integral, and
applying integration by parts, we get that

∑

j<i

cf(j)µj = E[Tf(i) | Λ = f] = Pr[0 ≤ Tf(i) ≤ 1 | Λ = f]−
∫ 1

0
Pr[0 ≤ Tf(i) ≤ τ | Λ = f]dτ

= Ui(1)−
∫ 1

0
Ui(τ)dτ. (C.14)

Our goal is to upper bound the integral in (C.14). In order to do so, observe that by Lemma C.2,
(4.6) holds for i. As a result, after rewriting this, we know that for all 0 < τ ≤ 1/2,

Ui(1− τ) ≤ Ui(τ)− cf(1) log

(

Ui(τ)

cf(1)

)

(C.15)

Now, define

τ0 =

{

min{τ ∈ (0, 1/2] : Ui(τ) ≥ cf(1) · u0} if Ui(1/2) ≥ cf(1) · u0
1
2 if Ui(1/2) < cf(1) · u0.

(C.16)

We assume that τ0 < 1/2, as τ0 = 1/2 is an edge case that is handled easily. By applying a change
of variables, followed by (C.15),

∫ 1/2

τ0

Ui(τ)dτ +

∫ 1−τ0

1/2
Ui(τ)dτ =

∫ 1/2

τ0

Ui(τ)dτ +

∫ 1/2

τ0

Ui(1− τ)dτ

≤
∫ 1/2

τ0

(

2Ui(τ)− cf(1) log

(

Ui(τ)

cf(1)

))

dτ (C.17)

More, by using the definition of τ0, together with (C.15) at τ = 1/2,

Ui(τ) ≤ cf(1)u0 if τ ∈ [0, τ0) (C.18)

cf(1) · u0 ≤ Ui(τ) ≤ Ui(1/2) ≤ cf(1) if τ ∈ [τ0, 1/2] (C.19)

Ui(τ) ≤ Ui(1) if τ ∈ [1− τ0, 1] (C.20)

Thus, using (C.18) and (C.20), followed by (C.13) and (C.17),

∫ 1

0
Ui(τ)dτ ≤ τ0cf(1)u0 +

∫ 1/2

τ0

Ui(τ)dτ +

∫ 1−τ0

1/2
Ui(τ)dτ + Ui(1)τ0
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≤ τ0(2cf(1) − cf(1) log(u0)) +

∫ 1/2

τ0

(

2Ui(τ)− cf(1) log

(

Ui(τ)

cf(1)

))

dτ.

≤ τ0(2cf(1) − cf(1) log(u0)) + (1/2 − τ0) max{2cf(1)− cf(1) log(u0), 2cf (1)},

where the final line uses (C.19) combined with the convexity of z → 2z−cf(1) log(z/cf(1)) on (0, 1).
We verify that (C.12) holds by handling both cases of the maximum. If 2cf(1)− cf(1) log(u0) ≤

2cf(1), then
∫ 1
0 Ui(τ)dτ ≤ cf(i), and so Ui(1) ≤ cf(1) +

∑

j<i cf(j)µj ≤ 1− cf(i), where the last line
applies (4.1) of Definition 5.

On the other hand, if 2cf(1) < 2cf(1) − cf(1) log(u0), then
∫ 1
0 Ui(τ)dτ ≤ cf(1)u0 − cf(1)

2 log(u0),
and so

Ui(1) = cf(1)u0 − cf(1) log(u0) ≤
∑

j<i

cf(j)µj + cf(1)u0 −
cf(1)

2
log(u0),

which implies u0 ≥ exp
(

− 2
cf(1)

∑

j<i cf(j)µj

)

. Thus, since z → z − log(z) is non-increasing on

(0, 1), we get that Ui(1) ≤ 2
∑

j<i cf(j)µj + cf(1) exp
(

− 2
cf(1)

∑

j<i cf(j)µj

)

≤ 1 − cf(i), where the

final inequality applies (4.2) of Definition 5.

C.2 Proof of Proposition 4.3

Recall that φ(z) := 4
9 − 2z

9 for each z ∈ [0, 1]. Clearly, φ is decreasing and continuous, and
(φ(z) + φ(1− z))/2 = 1/3 for each z ∈ [0, 1]. We verify the remaining properties of Proposition 4.3
in order. Note that for each z ∈ [0, 1],

φ(z) + φ(0) +

∫ z

0
φ(τ)dτ =

(

4

9
− 2z

9

)

+
4

9
+

(

4z

9
− z2

9

)

=
8

9
+

2z

9
− z2

9
≤ 1,

where the inequality holds since the function of z is maximized at z = 1. Thus, (4.16) holds.
Similarly,

(

φ(z) + 2

∫ z

0
φ(τ)dτ

)

+ φ(0) exp

(

−2
∫ z
0 φ(τ)dτ

φ(0)

)

=

(

22

9
+

2z

9
− z2

9

)

+
4

9
exp

(

−9

2

(

4z

9
− z2

9

))

≤ 1,

where the inequality holds since the function of z is maximized at z = 1. Thus, (4.17) holds, and
so the proof is complete.

C.3 Proof of Lemma 4.4

Recall that we have assumed
∑n

i=1 µi = 1, and µi > 0 for each i ∈ [n]. We first argue that
(cf(i), cb(i))ni=1 satisfy Definition 5. Now, (cf(i))

n
i=1 (respectively, (cb(i))ni=1) is non-increasing (re-

spectively, non-decreasing), due to the fact that φ is decreasing, as claimed in Proposition 4.3. We
next verify (4.1) and (4.2) of Definition 5 hold, beginning with σ = f. Observe that

∑

j<i

cf(j)µj =
∑

j<i

∫ µf(j)+µj

µf (j)
φ(τ)dτ =

∫ µf(i)

0
φ(τ)dτ. (C.21)

On the other hand, since φ is a decreasing function,

cf(i) =

∫ µf(i)+µi

µf (i)

φ(τ)dτ

µi
≤ φ(µf(i)), and cf(1) =

∫ µ1

0

φ(τ)dτ

µ1
≤ φ(0). (C.22)
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Finally, using (C.21) and (C.22), together with the fact that z → z exp

(

−2
∫ µ

f
(i)

0 φ(τ)dτ
z

)

is increas-

ing on z ∈ (0, 1),

cf(1) exp

(

−
2
∑

j<i cf(j)

cf(1)

)

= cf(1) exp

(

−2
∫ µf (i)
0 φ(τ)dτ

cf(1)

)

≤ φ(0) exp

(

−2
∫ µf(i)
0 φ(τ)dτ

φ(0)

)

(C.23)
By combining (C.21), (C.22), and (C.23), we get that

cf(i) + 2
∑

j<i

cf(j)µj + cf(1) exp

(

−
2
∑

j<i cf(j)

cf(1)

)

≤ φ(µf(i)) + 2

∫ µf(i)

0
φ(τ)dτ + φ(0) exp

(

−2
∫ µf (i)
0 φ(τ)dτ

φ(0)

)

≤ 1,

where the last inequality follows from (4.17) of Proposition 4.3. Thus, (4.2) of Definition 5 holds
for σ = f. By using (C.22) and (C.22), we can derive (4.1) of Definition 5 by using (4.16) of
Proposition 4.3. Similar arguments also apply to σ = b. Thus, (cf(i), cb(i))ni=1 satisfy Definition 5.

Observe now that for any i ∈ [n], we have that µb(i) + µi = 1− µf(i). Thus,

cf(i) + cb(i)

2
=

∫ µf (i)+µi

µf(i)

φ(τ)

2µi
dτ +

∫ µb(i)+µi

µb(i)

φ(τ)

2µi
dτ

=

∫ µf (i)+µi

µf(i)

φ(τ)

2µi
dτ +

∫ 1−µf(i)

1−µf (i)−µi

φ(τ)

2µi
dτ

=
1

µi

(

∫ µf (i)+µi

µf(i)

φ(τ) + φ(1 − τ)

2
dτ

)

=
1

3
,

where the third equality applies a change of variables, and the last equality applies Proposition 4.3.
Thus, mini∈[n]

cf(i)+cb(i)
2 = 1

3 , and so the proof is complete.
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