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Abstract

In the Network Revenue Management (NRM) problem, products composed of up to L re-
sources are sold to stochastically arriving customers. We take a randomized rounding approach
to NRM, motivated by developments in Online Contention Resolution Schemes (OCRS). The
goal is to take a fractional solution to NRM that satisfies the resource constraints in expectation,
and implement it in an online policy that satisfies the resource constraints in any state, while
(approximately) preserving all of the sales that were prescribed by the fractional solution.

OCRS cannot be naively applied to NRM or revenue management problems in general,
because customer substitution induces a negative correlation in products being demanded. We
start by deriving an OCRS that achieves a guarantee of 1/(1 + L) for NRM with customer
substitution, matching a common benchmark in the literature. We then show how to beat this
benchmark for all integers L > 1 assuming no substitution, i.e. in the standard OCRS setting.
By contrast, we show that this benchmark is unbeatable using OCRS or any fractional relaxation
if there is customer substitution, for all integers L that are the power of a prime number. Finally,
we show how to beat 1/(1 + L) even with customer substitution, if the products comprise one
item from each of up to L groups.

Our results have corresponding implications for Online Combinatorial Auctions, in which
buyers bid for bundles of up to L items, and buyers being single-minded is akin to no sub-
stitution. Our final result also beats 1/(1 + L) for Prophet Inequality on the intersection of
L partition matroids. All in all, our paper provides a unifying framework for applying OCRS
to these problems, delineating the impact of substitution, and establishing a separation be-
tween the guarantees achievable with vs. without substitution under general resource constraints
parametrized by L.



1 Introduction

In the Network Revenue Management (NRM) problem, a set of items M is sold in the form of

products. Each product j ∈ N has a fixed price rj and represents a bundle of items Aj ⊆ M ,

with the constraint that the same item cannot be sold more than once. Over time t = 1, . . . , T ,

customers make independence stochastic choices about which product to purchase, which can be

influenced by an online algorithm that dynamically controls product availability. All probability

distributions governing customers and their choices are given in advance, and the objective of an

online algorithm is to maximize its expected total revenue over the time horizon.

A common approach to NRM is to first solve a Linear Programming (LP) relaxation to obtain

an optimal offline fractional solution, in which xj prescribes the probability that each product j

should be sold. The goal is then to “round” this solution, which is only feasible in expectation, to

online decisions that respect the item feasibility constraints with probability (w.p.) 1. The easiest

way to ensure the quality of the online decisions is to provide a uniform guarantee, where every

product j is sold w.p. αxj for some constant α ∈ [0, 1], guaranteeing an α-fraction of the optimal

revenue. Online Contention Resolution Schemes (OCRS’s) are designed to provide exactly this type

of uniform guarantee, which have been shown to not worsen the best-possible α (Lee and Singla,

2018). OCRS’s operate in an abstract setting: the products j are presented in sequence, with each

one being “active” independently w.p. xj , where “active” represents that a customer is willing to

purchase product j. The OCRS must immediately decide whether to “accept” any active j, which

implies selling the product. The OCRS may not want to accept all products that are active and

feasible, because items should be preserved so that products j′ appearing at the end of the sequence

are still sold w.p. αxj′ .

OCRS’s cannot be directly applied to revenue management problems because the products j

being active are not quite independent. Indeed, even though choices are assumed to be independent

across customers, a particular customer t choosing one product j means that they would not choose

another, inducing a form of negative correlation. Nonetheless, this is generally not worse than the

typical independent setting of OCRS—for feasibility structures defined by matroids and knapsacks,

algorithms have already been extended to handle this basic form of negative correlation, with

identical guarantees α (see Subsection 1.3). Consequently, the subtlety with this basic form of
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negative correlation has been largely ignored.

In this paper, we show that this basic negative correlation can make the best-possible guarantee

strictly worse, under general feasibility constraints parametrized by the maximum number of items

in a product. This is a standard parametrization in NRM, and motivates us to define an extended

notion of OCRS that handles this basic form of negative correlation, which we interpret as a random

product being chosen at each time t = 1, . . . , T .

Definition 1.1 (Random-element OCRS). A universe of elements N is partitioned into disjoint

subsets N1, . . . , NT , where each Nt is referred to as a batch. The OCRS is given a fractional solution

(xj)j∈N , which satisfies both the feasibility constraints on N in expectation, and
∑

j∈Nt
xj ≤ 1

for all t. Sequentially over t = 1, . . . , T , at most one random element from Nt is drawn to be

active following probability vector (xj)j∈Nt , where no element is active w.p. 1 −
∑

j∈Nt
xj . The

OCRS must immediately decide whether to accept any active element, subject to the feasibility

constraints. We say that the OCRS is random-element α-selectable if it guarantees to accept every

element j w.p. αxj , for all feasibility structures in some class, all choices of T and partitionings

N = N1 ∪ · · · ∪ NT , and all fractional solutions (xj)j∈N satisfying both the feasibility constraints

on N in expectation and
∑

j∈Nt
xj ≤ 1 for all t.

Remark 1.1. We make the following remarks about Definition 1.1:

1. In the standard notion of OCRS, the guarantee only has to hold for the trivial partitioning

where T = |N | and |N1| = · · · = |NT | = 1. There is typically no index t nor notion of time.

2. In random-element OCRS, we typically interpret t as time, and hence for simplicity we assume

the batches arrive in order N1, N2, . . . , NT . It can be checked that all of our positive results

continue to hold if the t’s arrive in an order chosen by an oblivious adversary, who knows the

algorithm but not any random realizations.

Hereafter we focus on feasibility structures defined by L-bounded products. That is, there is a

set of items M assumed to have one copy each (we explain why this assumption is without loss in

Section 5). There is a set of products N , with each product j requiring a bundle of items Aj ⊆M .

An active product j is feasible to accept if and only if Aj does not intersect with Aj′ for any

previously-accepted product j′. Recalling that xj represents the probability of selling each product
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j ∈ N , we say that (xj)j∈N satisfies the feasibility constraints in expectation if

∑
j:i∈Aj

xj ≤ 1 ∀i ∈M ; (1)

i.e. no item is required more than once in expectation. We want the OCRS guarantee α to hold for

all feasibility structures where 1 ≤ |Aj | ≤ L for all j ∈ N , with no assumptions on the number of

items/products or the bundles Aj otherwise. We note that it is possible for different products to

require the same set of items, i.e. Aj = Aj′ for j ̸= j′. We allow the guarantee α to depend on L,

which is treated as a constant.

If L = 1, then we are in a classical (non-network) revenue management setting where only one

item can be sold at a time. If L = 2, then items and products can be interpreted as vertices and

edges in a graph respectively, where a set of products is feasible to sell if and only if they form

a matching in the graph. This is a well-studied setting, with (1) being the matching polytope.

(Technically our formulation is more general by allowing for single-vertex products and parallel

edges; nonetheless, it can be checked that the positive results from this literature continue to hold

for these cases.) In this setting, Ezra et al. (2022) have considered random-element OCRS where

the guarantee only has to hold under a specific partitioning (vertex-arrival “batches”), and shown

how the guarantee can improve. By contrast, we study how the guarantee can worsen under a

worst-case partitioning.

1.1 Results for (Random-element) OCRS with L-bounded Products

A simple random-element 1/(1 + L)-selectable OCRS (Section 2). We warm up by deriving a

simple random-element 1/(1 +L)-selectable OCRS, based on the idea of exact selection from Ezra

et al. (2022). This implies a guarantee of 1/(1 + L) relative to the LP relaxation (and optimal

dynamic program) in NRM problems with general pricing and assortment controls, as long as each

product contains at most L items. This also implies a guarantee of 1/(1+L) relative to the prophet’s

welfare in general Online Combinatorial Auctions (OCA), as long as each agent wants most L items.

We defer the full descriptions of these problems, and their reductions to random-element OCRS,

to Section 5.

We note that the guarantee of 1/(1+L) was already known in both the NRM (Ma et al., 2020)
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and OCA (Correa et al., 2023) problems, with the latter result being achieved by a particularly

simple static item pricing mechanism. Both of the 1/(1+L) results in Ma et al. (2020) and Correa

et al. (2023) have been extended in subsequent works, as we discuss in Subsection 1.3. Therefore,

1/(1 + L) can be viewed as a benchmark to beat for L-bounded products.

Beating 1/(1+L) in standard OCRS (Subsection 4.1). We establish a guarantee strictly exceed-

ing 1/(1 + L) for all L > 1 in the standard OCRS setting without our notion of random elements.

We note that a guarantee strictly exceeding 1/3 was already known in the L = 2 case which cor-

responds to matchings in graphs (Ezra et al., 2022; MacRury et al., 2023), but their “witness”

arguments do not easily extend to a general L > 2. Indeed, as we explain in Subsection 1.2, we use

a new analysis technique that also sheds new light even for the L = 2 case.

Standard OCRS can still be applied to the NRM problem with independent time-varying Poisson

demands, which is the original case of NRM considered in Gallego and Van Ryzin (1997). They

can also be applied to the OCA problem with single-minded agents, a case of interest in Correa

et al. (2023); Marinkovic et al. (2023). We explain these special cases in Section 5, and our result

implies a guarantee strictly exceeding 1/(1 + L) for both of them.

Unbeatability of 1/(1 +L) in random-element OCRS (Section 3). We show that the guarantee

of 1/(1+L) is best-possible for general L under our notion of random-element OCRS. In particular,

we show how to translate a finite affine plane of order L into an instance with random L-bounded

elements in which no OCRS can be better than 1/(1+L)-selectable. Finite affine planes are known

to exist when L is a prime power, i.e. L = pk for some prime number p and positive integer k (see

Moorhouse (2007) for a reference). They are known to not exist for L = 6, 10, but otherwise the

problem is open. In sum, our result implies that 1/(1+L) is unbeatable for random-element OCRS

when L = 2, 3, 4, 5, 7, 8, 9, 11, and possibly 12.

The main idea behind our construction is to partition the elements into “intersecting” perfect

matchings, and we elaborate on the connection with finite affine planes in Section 3. The L = 2

result implies that OCRS’s for graph matching cannot be better than 1/3-selectable when edges

are batched adversarially, something not previously known. Our result more generally shows that

1/(1+L) is unbeatable by any analysis that does not discriminate between the LP relaxation (also
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known as the fluid or ex-ante relaxation) vs. tighter ones, which is the case for all NRM analyses

known to us. We remark that for OCA, Correa et al. (2023) show that 1/(1 + L) is unbeatable

against the tighter prophet benchmark, if the algorithm is restricted to using static item prices.

Their result also does not require any primality assumptions on L.

Beating 1/(1+L) in random-element OCRS (Subsection 4.2). Finally, we show that 1/(1+L)

can be beaten even for random-element OCRS on L-partite hypergraphs, where the items come

from L groups and each product requires at most one item from each group. This is a natural

setting in NRM where each product can e.g. be a “combo” of a main dish + side + drink, and

also applies to hotel bookings for intervals of length at most L (Rusmevichientong et al., 2023).

Moreover, this captures the prophet inequality problem on the intersection of L partition matroids,

whose tight ratio is mentioned as an open problem in Correa et al. (2023). They show that the tight

ratio is at least 1/(1+L); we now show it is strictly bigger. Moreover, our work generally suggests

that the tight ratio could depend on whether the elements in the prophet inequality problem are

allowed to be random.

1.2 Techniques

Warm-up: attaining 1/(1+L). Our random-element OCRS is based on the idea of exact selection,

first used by Ezra et al. (2022) for standard OCRS on graphs. To get our α = 1/(L+ 1)-selectable

random-element OCRS, we extend the idea of exact selection to arbitrary batches and values of L.

The idea is to describe the random-element OCRS recursively in terms of the T batches: Assuming

each product j′ ∈ Nt′ is selected w.p. αxj′ for all t′ < t, we extend this guarantee to batch Nt.

This requires selecting an active j ∈ Nt w.p. α/P(every item of j is available), as so the crux of the

analysis is arguing that this is well-defined, i.e., α ≤ P(every item of j is available). Our 1/(L+1)

guarantee applies a simple union bound over the L items of product j, which combined with the

feasibility constraint (1) yields the desired inequality.

Beating 1/(1+L). In order to beat 1/(1+L), the problem boils down to improving on the union

bound, which can underestimate the probability that an incoming product j is feasible. In existing

works studying the standard OCRS (e.g., Ezra et al. (2022) and MacRury et al. (2023)) for L = 2,
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this is done via a witness argument. In this setting, a product j contains two items, and the goal is to

lower bound the joint probability that both items are selected before j arrives. Since characterizing

this exact probability for an arbitrary input is intractable, previous works have instead focused on

defining a witness event that implies both items are selected, yet whose probability can be estimated.

Unfortunately, these witness events heavily rely on the graph structure of L = 2, and the fact that

all batches contain a single product. They do not seem easy to generalize to L ≥ 3, nor to when

there are correlations between products due to the batches.

We develop a new framework aimed at enhancing the guarantee. To improve the union bound,

it is sufficient to demonstrate the existence of a strictly positive probability of the intersection of

certain events. In our setting, where we consider a set of items, our goal is to analyze the cumulative

probabilities of any two items being unavailable by the end across all possible combinations. This

probability can be further lower bounded by the summation of probabilities that pairs of products

are accepted across all possible pairs. The framework consists of two key steps. First, for any two

products j, j′ belonging to distinct batches Nt, Nt′ that also have disjoint item sets Aj ∩ Aj′ = ∅,

we show (in Lemma 4.1 in Section 4) that

P
(
j accepted ∩ j′ accepted

)
≥ Cxjxj′ (2)

where C > 0 is a constant. To the best of our knowledge, this fact was not apparent from Ezra

et al. (2022); MacRury et al. (2023): it says that for every pair of disjoint edges, the OCRS of Ezra

et al. (2022) has positive probability of accepting both of them. We prove (2) by reducing it to a

concave optimization problem, in which the coefficient matrix for constraints is totally unimodular

and thus the optimal solution can be explicitly characterized.

Second, we leverage (2) to show that multiple bad events for a newly arriving product can

occur, and hence the union bound is not tight. Indeed, suppose product j0 is newly arriving and

Aj0 = {1, . . . , L}. In this case, (2) says that if Aj , Aj′ both intersect Aj0 but are themselves

disjoint, and moreover come from different batches and have xj , xj′ > 0, then both of the bad

events of j being accepted and j′ being accepted (either of which would make j0 infeasible) can
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occur. Eventually this reduces to an adversary’s problem of minimizing

L∑
i=1

∑
i′ ̸=i

T∑
t=1

∑
t′ ̸=t

∑
j∈Nt,j′∈Nt′ :
Aj∩Aj′=∅
i∈Aj ,i

′∈Aj′

xjxj′ (3)

subject to
∑

j:i∈Aj
xj = 1 for all i = 1, . . . , L and |Aj ∩ {1, . . . , L}| ≤ 1 for all j. If the adversary

can construct an arbitrary item-product configuration and with arbitrary batches, then they can

indeed achieve an objective value of 0 in (3) (which corresponds to the construction in our negative

result), and multiple bad events cannot occur. However, if we restrict the adversary to the standard

OCRS setting (i.e. |Nt| = 1 for all t), or restrict the item-product configuration to be an L-partite

hypergraph, then (3) is lower-bounded by a non-zero constant (see Lemma 4.2 in Subsection 4.1,

and Lemma 4.4 in Subsection 4.2). To bound the adversary’s optimization problem we use the fact

that every product intersects with {1, . . . , L} at most once and reduce (3) into a more compact

form with a bilinear objective and linear constraints. Interestingly, we can characterize the optimal

solution in the standard OCRS setting. Ultimately, this allows us to beat 1/(1 + L) in either of

these settings.

Unbeatability of 1/(1+L). To provide more intuition for the unbeatability, we provide an explicit

counterexample for L = 2 here and show 1/3 cannot be surpassed under random-element OCRS. In

this illustrative example, there are 3 periods and 4 items: {1, 2, 3, 4}. The figure below represents

the possible products in each period, where each edge denotes one product:

3 4

1 2

period 1
3 4

1 2

period 2
3 4

1 2

period 3

For example, in the first period, there are two possible products: (1, 2) and (3, 4). If products are

labeled by the items contained (i.e. the two endpoints of the edge), then this construction amounts

to N1 = {(1, 2), (3, 4)}, N2 = {(1, 3), (2, 4)}, and N3 = {(1, 4), (2, 3)}.

Additionally, the active probability of a product within the first two periods is (1−ε)/2 and the

active probability of a product in the final period is ε, ensuring the feasibility constraint is satisfied.

Formally, we have x(1,2) = x(3,4) = x(1,3) = x(2,4) = (1 − ε)/2 and x(1,4) = x(2,3) = ε. We now
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explain why 1/3 is unbeatable in this example. Note that for the product (1, 4), the probability

that this product is feasible is calculated as follows:

P (both items 1 and 4 are available)

=1− P(1 is used)− P(4 is used) + P (both 1 and 4 are used)

=1− α
(
x(1,2) + x(1,3) + x(3,4) + x(2,4)

)
+ P (both 1 and 4 are used)

=1− 2α(1− ε) + P (both 1 and 4 are used) ,

where the second equality holds because the probability that a product j is accepted is αxj under

OCRS. Moreover, P (both 1 and 4 are used) = 0 because it is not possible for two distinct edges

to be selected before period 3—the non-conflicting edges are in the same batch and hence cannot

both be active. Therefore, for the OCRS to remain valid, it must hold that 1− 2α(1− ε) ≥ α for

any ε > 0, which implies α ≤ 1/3. Expanding this intuition to general L, we find that as long as

there exists a finite affine plane of order L, we can make a similarly adversarial construction where

the union bound is tight and 1/(1+L) is unbeatable. The construction here with L = 2 is a special

case of a finite affine plane of order 2, with 3 parallel classes of 2 lines each. We defer to Section 3

for further details.

1.3 Further Related Work

Random-element OCRS. Our notion of random elements, which imply a basic form of negative

correlation, is not new to the vast literature on online Bayesian selection and allocation. That

being said, we are the first to show that random elements can worsen the best-possible guarantee,

which is why we explicitly distinguish between random-element OCRS and the standard OCRS

with fixed elements.

Under the simplest online selection constraint where at most k elements can be accepted, there

is no difference between fixed vs. random elements, because elements are identical. Under general

matroid constraints (in which elements are non-identical), the prophet inequality of Kleinberg and

Weinberg (2012) has been extended to handle random elements in the context of combinatorial

auctions, with the same guarantee of 1/2 (Dutting et al., 2020). Similarly, the ex-ante matroid

prophet inequality of Lee and Singla (2018) has been extended to handle random elements in the
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context of assortment optimization, also with the same guarantee of 1/2 (Baek and Ma, 2022).

Under knapsack constraints, Jiang et al. (2022) establish a tight guarantee of 1/(3 + e−2) for the

OCRS problem, which they later extend to elements with random sizes, corresponding to random

elements. In sum, for matroids and knapsacks, guarantees for fixed elements appear to extend to

random elements, even though there is no black-box reduction.

Random elements can also be interpreted as a basic form of negative correlation. In this

vein, classical prophet inequalities have been shown to extend to negatively dependent random

variables (Rinott and Samuel-Cahn, 1987; Samuel-Cahn, 1991). Meanwhile, Dughmi (2020) shows

that (1− 1/e)-selectable offline contention resolution schemes for matroids can be extended under

various forms of negative correlation, and even some cases of positive correlation.

Overall, the findings from the literature suggest that random elements and negative correlation

should not worsen guarantees in online Bayesian selection. In stark contrast, our work finds that

they do worsen guarantees for matchings in graphs, and more generally, L-bounded products.

Extensions of 1/(1 + L) results. In NRM, the 1/(1 + L) guarantee of Ma et al. (2020) has been

extended to both reusable items (Baek and Ma, 2022) and flexible products (Zhu and Topaloglu,

2023). In OCA, the 1/(1 + L) guarantee of Correa et al. (2023) has been shown to also hold when

only a single sample is given about each distribution, if the arrival order is random (Marinkovic

et al., 2023).

2 A Simple Random-element OCRS that is 1/(1 + L)-selectable

In this section, we design a simple random-element OCRS π which is α-selectable for α = 1/(L+1).

For each j ∈ N , define Xj to be an indicator random variable for the event that j is active. We

wish to design π in such a way that for each time step or period t ∈ [T ] = {1, . . . , T},

P(j is accepted by π | Xj = 1) = α,∀j ∈ Nt. (4)

Let us first introduce some addition terminology and notation for an arbitrary OCRS π. Specifically,

we say that a product j ∈ Nt is available (i.e., free), provided Aj′ ∩Aj = ∅ for each j′ ∈ N accepted

by π before step t. Similarly, we say that an item i ∈ M is available at step 1 ≤ t ≤ T , provided
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i /∈ Aj′ for each j′ ∈ N accepted by π before step t. The choice of π will always be clear, so we

denote these events by Fj and Ft,i, respectively. We also denote Zj as the event that π accepts

product j. Observe that Fj occurs if and only if ∩i∈AjFt,i occurs.

We now define π recursively in terms of t ∈ [T ]. Specifically, for t = 1, π accepts an active

product of N1 (if any) independently w.p. α. For t > 1, assume that π is defined up until step

t− 1. We extend the definition of π to step t in the following way:

Definition 2.1. If j ∈ Nt is active and available, then π accepts j independently w.p. min{1, α/P(Fj)}.

Remark 2.1. Since the event Fj depends on the decisions of π strictly before step t, π is well-defined.

Computing the exact value of P(Fj) is computationally challenging, however it can be estimated

via Monte Carlo simulation. In Appendix A, we discuss the complexity of implementing the OCRS

and provide the number of samples needed in order to achieve a given error tolerance.

Theorem 2.1. If α = 1/(1 + L), then π is an α-selectable random-element OCRS.

Proof of Theorem 2.1. It suffices to verify (4) inductively. The base case of t = 1 clearly holds, so

take t > 1, and assume that (4) holds for each t′ < t. We verify (4) holds for t.

Fix an arbitrary j ∈ Nt. Observe that due to Definition 2.1, conditional on Xj = 1, j is

accepted w.p. P(Fj) ·min{1, α
P(Fj)

}. Thus, in order to complete the inductive step, we must argue

that α ≤ P(Fj). Since α = 1/(L+ 1), it suffices to show that P(Fj) ≥ 1− αL. Now,

P(Fj) = P
(
∩i∈AjFt,i

)
= 1− P

(
∪i∈Aj F̄t,i

)
≥ 1−

∑
i∈Aj

P
(
F̄t,i

)
,

where F̄t,i is the complement of Ft,i, and the final inequality uses a union bound. But, F̄t,i occurs

if and only if there exists some t < t′, j′ ∈ Nt′ with i ∈ Aj′ for which Zj′ occurs. Yet by (4),

P(F̄t,i) =
∑
t′<t

∑
j′∈Nt′ :i∈Aj′

P(Zj′) = α
∑
t′<t

∑
j′∈Nt′ :i∈Aj′

x′j ≤ α,

where the inequality follows from the feasibility constraint (1). Thus,

P(Fj) ≥ 1−
∑
i∈Aj

P
(
F̄t,i

)
≥ 1− α

∑
i∈Aj

∑
j′:i∈Aj′

xj′ ≥ 1− α|Aj | ≥ 1− Lα,
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and so the proof is complete.

3 Unbeatability of 1/(1 + L)

As discussed in Section 1.2 for L = 2, no OCRS is better than 1/3-selectable. In this section, we

generalize this hardness result to other values of L. In fact, we prove a stronger result that no

online algorithm can attain a competitive ratio better than 1/(1 + L) against the optimal value of

a certain fluid LP. The value of an optimal solution to this fluid LP upper bounds (i.e., relaxes)

an accept-reject version of the Network Revenue Management problem, and is a special case of the

problem mentioned in the introduction. Specifically, in each step at most one product is drawn from

a distribution, at which point the online algorithm must irrevocably accept or reject the product,

subject to not violating item constraints. We include the details of the problem below.

Definition 3.1 (Accept-Reject NRM Problem). Let M be a collection of items, where initially there

is a single copy of each item. Products j ∈ N have fixed rewards rj ≥ 0, require a non-empty

subset of items Aj ⊆ M , and are partitioned into disjoint batches N1, . . . , NT , where T ∈ N. In

step t = 1, . . . , T , a random product j ∈ Nt is independently drawn w.p. λj , where no product

is drawn w.p. 1 −
∑

j∈Nt
λj . The online algorithm must then immediately decide whether or not

to accept j, where j can be accepted only if all its associated items i ∈ Aj are currently available

(i.e., each previously accepted product j′ satisfies Aj′ ∩ Aj = ∅). The online algorithm’s goal is to

maximize the expected cumulative reward of the products accepted.

In the reduced NRM problem, we benchmark the performance of an online algorithm against

the expected cumulative reward of the optimal offline allocation (i.e., assuming full knowledge of

the products drawn in the T steps). In order to upper bound (i.e., relax) this benchmark, we

consider the following fluid LP:

Definition 3.2 (Fluid LP).

max
∑
j

rjxj

s.t.
∑

j:i∈Aj

xj ≤ 1 ∀i ∈M,

0 ≤ xj ≤ λj ∀j ∈ N.

(5)
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Figure 1: Finite affine plane with order 3.

To see that (5) is a relaxation, let xj be the probability the benchmark accepts product j.

Clearly, xj ≤ λj for each j ∈ N , and
∑

j:i∈Aj
xj ≤ 1 for each i ∈ M . Thus, (xj)j∈N is a feasible

solution to (5). Moreover, by using our random-element OCRS terminology and considering each

product j to be active with probability xj , an α-selectable random-element OCRS can be used

to design an α-competitive online algorithm against the fluid LP. We defer the details of this

argument, as we prove a much more general reduction in Theorem 5.1 of Section 5 which includes

this argument as a special case. We are now ready to state our hardness result.

Theorem 3.1. No online algorithm is better than 1/(1 + L)-competitive against (5) when L is a

prime power.

Corollary 3.2 (implied by Theorems 3.1 and 5.1). No random-element OCRS is better than 1/(1+L)-

selectable when L is a prime power.

To prove Theorem 3.1, we will use the construction of a finite affine plane.

Definition 3.3 (Finite Affine Plane). In a finite affine plane of order L, there are L2 points and

L(L + 1) distinct lines, each containing exactly L points. These lines can be grouped into L + 1

classes of L parallel lines each, where the lines within a class are mutually disjoint and collectively

contain all L2 points. Finally, any two lines from two different classes intersect at exactly one point.

We display the finite affine plane of order 3 in Figure 1. Finite affine planes can be constructed

from a finite field whenever L is the power of a prime number, and we refer to Moorhouse (2007)

for further background. We now construct a configuration of items, products, and time steps for

NRM, based on a finite affine plane, that is difficult for online algorithms.
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Definition 3.4 (NRM Configuration). Construct an item for each point in the affine plane, so that

|M | = L2. Construct a product j for each line, where Aj consists of the items corresponding to

the L points in that line. Construct a batch Nt for each class of parallel lines, consisting of the

products corresponding to the L lines in that class. In sum, we have |N | = L(L+1), with N being

a disjoint union of the batches Nt for t = 1, . . . , L+ 1.

By the properties in Definition 3.3, this NRM configuration satisfies the following:

(i) For each t ∈ [L+ 1] and j, j′ ∈ Nt, if j ̸= j′, then Aj ∩Aj′ = ∅;

(ii) For each 1 ≤ t < t′ ≤ L+ 1 and j ∈ Nt, j
′ ∈ Nt′ it holds that |Aj ∩Aj′ | = 1.

We now prove Theorem 3.1 using the NRM configuration from Definition 3.4, which exists by

virtue of Definition 3.3 whenever L is a prime power.

Proof of Theorem 3.1. Assuming L is a prime power, the NRM configuration in Definition 3.4

exists. In this case, take ε < 1/L. We first set the remaining parameters necessary to describe

an input to the accept-reject NRM problem. For each t ∈ [L + 1] and j ∈ Nt, if t ≤ L then set

λj = (1− ε)/L and rj = 1, else set λj = ε and rj = 1/(εL).

We argue that no online algorithm can attain a competitive ratio better than 1/(L+1) against

the fluid LP on this input. First observe it is always possible to accept all products in the fluid

relaxation. That is, if we set xj = λj for each product j, then for each i ∈M ,

∑
j:i∈Aj

xj =
∑

j:i∈Aj

λj =
∑

t∈[L+1]

∑
j∈Nt:i∈Aj

λj = L · 1− ε

L
+ ε = 1,

where the penultimate equality holds because by (i) in Definition 3.4. The optimal value of the

fluid LP is thus equal to

∑
j

rjxj =
∑
j

rjλj = L2 · 1− ε

L
+ L · ε · 1

εL
= 1 + L(1− ε).

Now, because of condition (ii) of Definition 3.4, it is impossible to accept more than one product.

This is because any two products of distinct batches share an item, and there is only one copy of

each item. On the other hand, any online algorithm which accepts at most one product has an

expected reward of at most 1. To see this, observe that if it accepts a product j in one of the first L
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batches, then rj = 1, so this holds. Otherwise, it waits until the final batch, leading to an expected

reward of L ·ε · 1
εL = 1. In either case, the claim holds. By taking ε→ 0, this implies that no online

algorithm can attain a competitive ratio better than 1/(1 + L).

4 Beating 1/(1 + L) under Different Conditions

Despite the 1/(1 + L) selection guarantee being tight for a random-element OCRS in general, it is

possible to improve on this guarantee in certain scenarios. This was previously observed for standard

OCRS with L = 2 by Ezra et al. (2022); MacRury et al. (2023). In this section, we develop a general

framework to improve on 1/(L+1) for an arbitrary value of L. We then demonstrate our framework

in two settings: standard OCRS, and random-element OCRS with L-partite hypergraphs.

Recall the recursively defined random-element OCRS π of Section 2 which was parameterized by

α ∈ [0, 1]. Our general framework proceeds by considering the same OCRS, yet with α > 1/(L+1).

The exact value of α will be set depending on whether we are working in the standard OCRS setting,

or the random-element L-partite setting. In order to simplify the indices later, let us assume that

there are T + 1 batches. For each 1 ≤ t ≤ T + 1, we again define the induction hypothesis,

P(Zj | Xj = 1) = α,∀j ∈ Nt, (6)

where Zj is the event j is accepted by π. Observe that when verifying (6), we can assume without

loss of generality that we are working with a product j0 from the final batch NT+1 for which

Aj0 = {1, . . . , L}. Recalling the definition of π, it suffices to argue that P(Fj0) ≥ α, where Fj0 is

the event j0 is available. Now, since FT+1,i is the event that item i is available at step T + 1,

P(Fj0) = P
(
∩Li=1FT+1,i

)
= 1− P(∪Li=1F̄T+1,i), (7)

In Theorem 2.1, we lower bounded (7) by applying a simple union bound to P(∪Li=1F̄T+1,i). In

order to improve on this, we first argue that with respect to minimizing (7), (equivalently, maxi-

mizing P(∪Li=1F̄T,i)), the worst-case input for π occurs when the feasibility constraints on the items
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{1, . . . , L} of j0 are tight:

∑
j:i∈Aj

xj = 1, ∀i ∈ {1, . . . , L}. (8)

To justify this assumption, observe that if (8) does not hold for items M ′ ⊆ {1, . . . , L}, then we can

always consider an auxiliary input identical to the original one except with an additional product

for each item of M ′, all of which arrive before time T + 1. Due to the definition of π, it is clear

that adding these products can only increase P(∪Li=1F̄T+1,i), and thus decrease (7). Finally, by a

similar argument, the worst-case input for (7) occurs when
∑

j′∈NT+1
xj′ is arbitrarily small. Thus,

in the following computations we abuse notation slightly and write that
∑

j′∈NT+1
xj′ = 0, with the

understanding that we actually mean
∑

j′∈NT+1
xj′ ≤ ε for some arbitrarily small constant ε > 0.

The remainder of our framework can be summarized in the following three steps:

(i) Using inclusion-exclusion, we lower bound (7) and improve on the union bound by considering

an additional term that accounts for pairs of items not being available. This additional term

can be further lower bounded by a sum over P(Zj ∩ Zj′) for certain products j, j′.

(ii) For any pair of products j, j′ satisfying certain conditions, we show that P(Zj ∩ Zj′) ≥

C(α)xjxj′ , where C(α,L) is some absolute constant, dependent only on α and L.

(iii) Combining steps (i) and (ii), the problem is reduced to lower bounding a sum over terms of

the form xjxj′ (see (9)). This can then be reformulated as an optimization problem. For

standard OCRS and random-element OCRS on L-partite hypergraphs, the optimal value of

the optimization problem must be strictly positive, which allows us to beat 1/(L+ 1).

We being with step (i). We claim the following sequence of inequalities (with explanations

following afterwards):

P
(
∩Li=1FT+1,i

)
≥1−

L∑
i=1

P
(
F̄T+1,i

)
+max

i

∑
i′ ̸=i

P
(
F̄T+1,i ∩ F̄T+1,i′

)
≥1−

L∑
i=1

P
(
F̄T+1,i

)
+

1

L

L∑
i=1

∑
i′ ̸=i

P
(
F̄T+1,i ∩ F̄T+1,i′

)
≥1− αL+

1

L

L∑
i=1

∑
i′ ̸=i

P
(
F̄T+1,i ∩ F̄T+1,i′

)
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≥1− αL+
1

L

L∑
i=1

∑
i′ ̸=i


∑

j:{i,i′}⊆Aj

P(Zj) +
∑

t,t′∈[T ]:
t̸=t′

∑
j∈Nt,j′∈Nt′ :
Aj∩Aj′=∅

Aj∩[L]=i,Aj′∩[L]=i′

P
(
Zj ∩ Zj′

)


=1− αL+
1

L

L∑
i=1

∑
i′ ̸=i


∑

j:{i,i′}⊆Aj

αxj +
∑

t,t′∈[T ]:
t̸=t′

∑
j∈Nt,j′∈Nt′ :
Aj∩Aj′=∅

Aj∩[L]=i,Aj′∩[L]=i′

P
(
Zj ∩ Zj′

)
 .

The first inequality follows by inclusion-exclusion, the second by an averaging argument, and the

third by an application of the induction hypothesis (6) in the same way as done in the proof of

Theorem 2.1. The fourth inequality holds by considering a subset of the events in which F̄T+1,i ∩

F̄T+1,i′ holds, and the final inequality applies (6) again.

We now describe step (ii), where our goal is to lower bound P
(
Zj ∩ Zj′

)
for j ∈ Nt and j′ ∈ Nt′ ,

where t ̸= t′. Recall that when π is presented a product j, it draws a random bit, say Bj , which

is 1 independently w.p. min{1, α/P(Fj)} (note that indeed α/P(Fj) ≤ 1, due to the induction

hypothesis (6)). Let us say that j is survives, provided BjXj = 1. Otherwise, we say that j is dies.

Using this terminology, we describe a sufficient condition in order for Zj ∩Z ′
j to occur. Specifically,

suppose that each each product j′′ /∈ Nt∪Nt′ which shares an item with j or j′′ dies. Then, Zj∩Zj′

occurs, provided both j and j′ survive. Using independence, the joint probability of these events

is easily computed, and so we get that

P
(
Zj ∩ Zj′

)
≥ αxj
P (Fj)

αxj′

P
(
Fj′
) ∏

τ /∈{t,t′}

1−
∑

j′′∈Nτ :Aj′′∩(Aj∪Aj′ )̸=∅

αxj′′

P(Fj′′)


≥α2xjxj′

∏
τ /∈{t,t′}

1−
∑

j′′∈Nτ :Aj′′∩(Aj∪Aj′ )̸=∅

αxj′′

P(Fj′′)


≥α2xjxj′

T∏
τ=1

1−
∑

j′′∈Nτ :Aj′′∩(Aj∪Aj′ )̸=∅

αxj′′

P(Fj′′)


where the penultimate equality uses the trivial upper bound of 1 on P(Fj) and P(Fj′), and the final

inequality uses that each term in the product takes its value in [0, 1].
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Lemma 4.1. For any products j and j′ with Aj ∩Aj′ = ∅, it holds that

T∏
τ=1

1−
∑

j′′∈Nτ :Aj′′∩(Aj∪Aj′) ̸=∅

αxj′′

P(Fj′′)

 ≥ (1− α(L+ 1) + α/2L

1− αL+ α/2L

)2L

.

The proof of Lemma 4.1 bounds each P(Fj′′) using the various xj′′ and then converts the product

term into an expression depending only on the xj′′ . By analyzing an optimization problem which

minimizes the product term via the xj′′ , we can then characterize the optimal solution, which leads

to the result above. We provide a detailed proof in Appendix B.

By Lemma 4.1, in order to lower bound P(∩Li=1FT+1,i), it remains to analyze

L∑
i=1

∑
i′ ̸=i


∑

j:{i,i′}⊆Aj

αxj + α2

(
1− α(L+ 1) + α/2L

1− αL+ α/2L

)2L T∑
t=1

∑
t′ ̸=t

∑
j∈Nt,j′∈Nt′ :
Aj∩Aj′=∅

Aj∩[L]=i,Aj′∩[L]=i′

xjxj′

 .

We claim that in the worst case, xj = 0 for any j such that |Aj ∩ [L]| ≥ 2. To see this, note that

(
1− α(L+ 1) + α/2L

1− αL+ α/2L

)2L

is decreasing in α. Thus, since α ≥ 1/(1 + L), this is upper bounded by 1/(2L+ 1)2L. Therefore,

in order to minimize the summand for {i, i′}, it is never optimal to set xj > 0 if {i, i′} ⊆ Aj . We

can thus restrict our attention to the case where |Aj ∩ [L]| ≤ 1 for every product j. That is, we

analyze
L∑
i=1

∑
i′ ̸=i

T∑
t=1

∑
t′ ̸=t

∑
j∈Nt,j′∈Nt′ :
Aj∩Aj′=∅
i∈Aj ,i

′∈Aj′

xjxj′ , (♣) (9)

subject to the constraints
∑

j:i∈Aj
xj = 1 for any i ∈ [L] and |Aj ∩ [L]| ≤ 1 for any product j.

In general, (♣) can be as small as zero even with these two constraints satisfied (e.g., in our

worst case configuration in Definition 3.4). However, under certain assumptions, it is possible to

show (♣) > 0. In what follows, we provide lower bounds on (♣) assuming standard OCRS and

random-element OCRS with L-partite hypergraphs, respectively.
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4.1 Standard OCRS

In the standard OCRS problem, there exists at most one possible product in each time step, i.e.,

|Nt| = 1 for all t. With such a restriction, it is not possible to choose the products in such a way

that (♣) = 0. In fact, we show in the following result that (♣) ≥ L− 1.

Lemma 4.2. Under standard OCRS, it holds that (♣) ≥ L− 1.

The proof of Lemma 4.2 appears in Appendix B, and so we just briefly sketch it here. Using

the fact that the feasibility constraint (8) is binding, and that every product intersects with [L] in

at most one item, we can rephrase (♣) as an optimization problem maximizing

L∑
i=1

∑
i′′∈[N ]\[L]

 ∑
j:i,i′′∈Aj

xj

∑
i′ ̸=i

∑
j′:i′,i′′∈Aj′

xj′

 .

The problem can be further rewritten as an optimization problem with a bilinear objective and

linear constraints. Interestingly, we are able to characterize the optimal solution, which leads to the

lemma. By combining Lemma 4.2 with the derivation preceding (9), we get the following result:

Theorem 4.3. Given L ≥ 2, suppose that π of Definition 2.1 is passed α which satisfies

κ(α) := 1− α(L+ 1) + α2L− 1

L

(
1− α(L+ 1) + α/2L

1− αL+ α/2L

)2L

≥ 0.

Then, π is α-selectable on standard OCRS inputs.

By checking the first order derivative of κ, it can be verified that the function κ(α) is monoton-

ically decreasing in α. Since κ(1/(1 + L)) > 0, this implies that there exists α∗ > 1/(1 + L) such

that κ(α∗) = 0. Thus, π is α∗-selectable, and so 1/(L + 1) is beatable. For any given L, we can

numerically find the value of α∗. In particular, when L = 2, we have α∗ ≈ 0.33336.

4.2 Random-element OCRS with an L-partite Graph

Theorem 4.3 shows that 1/(1+L) is beatable for any value of L under the standard OCRS, and so

combined with Theorem 3.1, we have proven a separation between standard OCRS and random-

element OCRS when L is a prime power. We now show that if the underlying graph has some
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structural properties, then 1/(L+ 1) is beatable even for random-element OCRS. We focus on the

case where the products and items form an L-partite hypergraph. Specifically, the set of items can

be partitioned into L disjoint subsets, such that every product contains at most one item from each

subset.

Definition 4.1 (L-partite Hypergraph). We say that the feasibility structure forms an L-partite

hypergraph if the item set M can be partitioned into M1 ∪ · · · ∪ML such that |Aj ∩Mℓ| ≤ 1 for all

products j ∈ N and ℓ = 1, . . . , L. Put in words, the items can be divided into L groups such that

each product contains at most one item from each group.

Hypergraphs of this form have been widely studied in NRM. For example, in the assemble-to-

order system, all products are assembled from a set of components so that different combinations

of items for each component lead to different products. Without loss of generality, we assume each

product j is consists of L items with exactly one item from each Mi. If there exists a product

which contains less than L items, we can add a dummy item to the group which is consumed by

this product. We now argue that 1/(1 + L) is beatable in this setting. As in the case of standard

OCRS inputs, it suffices to lower bound (♣).

Lemma 4.4. For an L-partite hypergraph, it holds that (♣) ≥ 1.

The proof of Lemma 4.4 is analogous to Lemma 4.2 in that it involves characterizing the optimal

solution to a related optimization problem. Combined with the previous discussion, Theorem 4.5

then follows.

Theorem 4.5. Given L ≥ 2, suppose that π of Definition 2.1 is passed α which satisfies

1− α(L+ 1) +
α2

L

(
1− α(L+ 1) + α/2L

1− αL+ α/2L

)2L

≥ 0.

Then, π is α-selectable on L-partite hypergraphs.

The left-hand side function of Theorem 4.5 is decreasing in α and greater than 0 at α = 1/(L+1).

Thus, 1/(L+ 1) is beatable for L-partite hypergraphs.
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5 Reduction

All of this paper was focused on deriving (random-element) OCRS’s. In this section, we define

applications in the form of the Network Revenue Management and Online Combinatorial Auctions

problems, along with various special cases, and formalize their reduction to (random-element)

OCRS’s. We define a very general problem that, while abstract, allows us to unify the two appli-

cations and simultaneously derive 1/(1 + L) (and better) guarantees for them, using OCRS. This

very general abstraction, along with the distinction between standard vs. random-element OCRS

in the reduction, is to our knowledge new.

Definition 5.1 (Abstract Problem with Substitutable Actions). Items i ∈ M have positive integer

starting inventories ki. Products j ∈ N have fixed rewards rj ≥ 0 and require a non-empty subset

of items Aj ⊆ M . At each time t = 1, . . . , T , an action S ∈ St is played, resulting in up to one

product j being sold, in which case reward rj is collected and the remaining inventory of each i ∈ Aj

is decremented by 1. A product j becomes infeasible if it requires an item with zero remaining

inventory, and actions that have positive probability of selling an infeasible product cannot be

played. The objective is to maximize total expected reward, when all sales probabilities are known

in advance and independent across time. In particular, for all t and S ∈ St, we are told the

probability ϕt(j, S) of selling each product j under action S, where
∑

j ϕt(j, S) ≤ 1 (because at

most one product can be sold) and 1−
∑

j ϕt(j, S) denotes the probability that no product is sold.

We assume that ϕt defines substitutable actions for all t. By this, we mean that for any action

S ∈ St and set of “forbidden” products F ⊆ N , there exists a “recourse” action S′ ∈ St such that

ϕt(j, S
′) = 0 ∀j ∈ F ; (10)

ϕt(j, S
′) ≥ ϕt(j, S) ∀j /∈ F. (11)

Put in words, the recourse action S′ must have zero probability of selling any forbidden product,

and weakly greater probability of selling any non-forbidden product. Taking F = N , condition (10)

implies the existence of a “null” action in each St that has zero probability of selling any product.

The problem instance falls under the special case of no substitution if for each t, the set of

products that can be sold under any action must all require the same subset of items (even though
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these products can have different rewards). Formally, this is stated as Aj = Aj′ (but possibly

rj ̸= rj′) for all j, j
′ ∈ ∪S∈St{j : ϕt(j, S) > 0}, for each t = 1, . . . , T .

Definition 5.2 (Capturing NRM). The abstract problem directly defines NRM if actions are inter-

preted as assortments (subsets) of products to offer, i.e. S ⊆ N , with ϕt(j, S) = 0 for all j /∈ S.

Function ϕt defines substitutable actions via the recourse action S′ = S \ F , as long as the prob-

ability of selling products in an assortment does not decrease after other products F are removed

(and St is downward-closed in that if S lies in St then all subsets of S also lie in St). This holds

for substitutable choice models, which is a standard assumption in assortment optimization that is

satisfied by all random-utility models (Golrezaei et al., 2014). In our setting that sells products

which are bundles of items, we argue that this assumption is even milder, because complementarity

effects can be captured by creating larger bundles that combine all the items that are complements.

We note that the formulation with assortments is general, and captures pricing decisions as well.

Indeed, one can make copies of each product j, where the copies have identical Aj but different rj ,

and make St constrain assortment S so that at most one copy (price) of each product is offered.

In the accept/reject version of NRM, at each time t a random product j arrives, drawn inde-

pendently according to a known probability vector (λtj)j . This can be captured using assortments

by defining ϕt(j, S) = λtj1(j ∈ S) for all t, j, S, with S representing the subset of products to

make available at time t. Although this is often called the “independent demand model” in the

literature, under our Definition 5.1 it is not a case of no substitution, because products that require

different sets of items can all have positive probability of arriving at a time step t. Put another

way, one product arriving during t precludes other products from arriving, inducing a basic form

of negative correlation. However, the original formulation of NRM (Gallego and Van Ryzin, 1997),

in which time is continuous and demands for different products arrive from independent (time-

varying) Poisson processes, falls under the special case of no substitution because the time steps

are infinitesimally small and any negative correlation will vanish.

Definition 5.2 as stated does not capture personalized revenue management, in which a customer

type is observed at each time t before assortment S is decided. Nonetheless, personalized NRM

can be captured using our abstract Definition 5.1, by having an action represent a mapping that

prescribes a decision for each customer type that could be observed. We now illustrate this, by
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capturing similar dynamics in the OCA problem, in which for each t, a type (valuation function)

is observed before a decision is made.

Definition 5.3 (Capturing L-bounded Online Combinatorial Auctions). In the Online Combinatorial

Auctions problem, each t represents an agent, who independently draws a random valuation function

Vt : 2M → R≥0 from a known distribution. It is assumed that every potential realization of Vt

satisfies Vt(∅) = 0, monotonicity (A′ ⊆ A =⇒ Vt(A
′) ≤ Vt(A)), and Vt(A) = maxA′⊆A,|A′|=L Vt(A

′)

for all |A| > L, where the last assumption is the critical one capturing the fact that an agent never

needs more than L items. When an agent t arrives, Vt is observed, and then a subset of at most

L items must be irrevocably assigned to them, subject to the same inventory constraints as in

Definition 5.1. The objective is to maximize expected welfare, i.e. the expected sum of valuations

that agents have for the items assigned to them. We do not worry about incentive-compatibility,

although recent developments (Banihashem et al., 2024) show that our algorithm can be converted

into an incentive-compatible posted-price mechanism.

To capture this using the abstract problem in Definition 5.1, for each t, potential realization

of Vt, and bundle A ⊆ M with 1 ≤ |A| ≤ L, we create a product j with Aj = A and rj = Vt(A).

An action S is a mapping that assigns items for each potential realization of Vt, among the 2L − 1

products created for that realization, or the empty set which is not a product. For products j,

probability ϕt(j, S) equals that of realizing Vt if j is assigned for Vt by S, and 0 otherwise. (We

worry about the computational efficiency of these operations later.) This defines substitutable

actions because for any mapping S, we can take S′ to be the mapping that remaps any forbidden

products F in the range of S to the empty set, satisfying (10) by construction, and satisfying (11)

as equality.

In the single-minded special case, each agent t is only interested in a particular non-empty

bundle At ⊆M . That is, Vt(A) = Vt(A
t) if A ⊇ At and Vt(A) = 0 otherwise. The only uncertainty

lies in the valuation Vt(A
t), and hence this can also be interpreted as a prophet inequality problem.

Indeed, we only have to create products j with Aj = At for each t, and an action S ∈ St would

decide for every potential realization of Vt(A
t) whether it is high enough to “accept” by assigning

At. Returning to the abstract problem, this would fall under the no substitution special case.

We now define a relaxation for the abstract problem that will allow us to derive guarantees for
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the NRM and OCA problems in a unified manner.

Definition 5.4 (LP Relaxation). Let LP denote the optimal objective value of the following LP:

LP := max
∑
j

rj

T∑
t=1

∑
S∈St

ϕt(j, S)xt(S) (12)

s.t.
∑

j:i∈Aj

T∑
t=1

∑
S∈St

ϕt(j, S)xt(S) ≤ ki ∀i ∈M (13)

∑
S∈St

xt(S) = 1 ∀t = 1, . . . , T (14)

xt(S) ≥ 0 ∀t = 1, . . . , T ;S ∈ St. (15)

In (12)–(15), variable xt(S) can be interpreted as the probability of playing action S at time

t. We note that the item feasibility constraints only have to be satisfied in expectation in (13).

The optimal objective value LP is an upper bound on the expected welfare of the prophet in OCA,

who knows the realizations of Vt in advance and assigns items optimally. For the special case of

the accept-reject NRM problem, LP can be seen to be equivalent to the fluid LP (i.e, (5)) from

Section 3, and so it upper bounds the expected reward of the optimal offline allocation. When

assortments are offered in the general NRM problem (Ma, 2022), there is no clear analogue of

this benchmark, but LP still upper-bounds the optimal (intractable) dynamic programming value,

which is well-defined assuming the time steps unfold in chronological order t = 1, . . . , T .

Theorem 5.1. For the abstract problem with substitutable actions, a random-element α-selectable

OCRS implies an online algorithm whose total expected reward is at least α · LP. If the instance

has no substitution, then a standard OCRS (without random elements) suffices.

Taken abstractly, Theorem 5.1 does not promise anything about computational efficiency. How-

ever, we will see during its proof that for both the NRM and OCA problems, our OCRS’s (which are

polynomial-time) will imply polynomial-time online algorithms. Theorem 5.1 allows us to achieve

the guarantee of 1/(1 + L) in both the general NRM and OCA problems, and beat 1/(1 + L) in

the independent Poisson demand and single-minded special cases, respectively. We can also always

beat 1/(1+L) if the products form an L-partite hypergraph (see Definition 4.1), and we now clarify

how this arises from a further special case of valuation functions.
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Definition 5.5 (L-partite Valuation Function). Recall that a valuation function V : 2M → R≥0 is

L-bounded if V (A) = maxA′⊆A,|A′|=L V (A′) whenever |A| > L, which we assumed about the agents’

valuation functions. We define an L-partite valuation function as the further special case where

V (A) = max
i1∈A∩M1,...,iL∈A∩ML

V ({i1, . . . , iL}). (16)

Here we assume that the items M are pre-divided into L groups M1, . . . ,ML, and note that iℓ may

not exist in (16) if A ∩Mℓ = ∅. Put in words, (16) imposes that any subset A is valued based

on the maximum valuation obtainable by choosing at most one item from each group within A.

When reducing from L-partite valuation functions to the abstract problem, we only have to create

products j where Aj satisfies |Aj ∩Mℓ| ≤ 1 for all ℓ = 1, . . . , L, and hence the products will form

an L-partite hypergraph.

In Definitions 5.3 and 5.5 there were items and valuation functions but no products. We

explained how to construct products for our abstract problem in Definition 5.1, in a way that

translated L-bounded valuation functions to L-bounded products, and L-partite valuation func-

tions to L-partite hypergraphs. In the next setting we capture, there are products and feasibility

constraints but no items (or valuation functions). We explain how to construct items, starting

inventories, and item containment relationships that represent the same feasibility constraints and

correspond to an L-partite hypergraph.

Definition 5.6 (Intersection of L Partition Matroids). In a partition matroid constraint, a universe

of products N is partitioned into parts N(1), . . . , N(m), with upper bounds k(1), . . . , k(m). A

subset S ⊆ N is said to be feasible if |S ∩ N(i)| ≤ k(i) for all i = 1, . . . ,m. Given L partition

matroids defined by parts N ℓ(1), . . . , N ℓ(mℓ) and upper bounds kℓ(1), . . . , kℓ(mℓ) for ℓ = 1, . . . , L,

their intersection refers to subsets S ⊆ N that are feasible in each matroid ℓ.

We can translate the intersection of L partition matroids into inventory constraints that form

an L-partite hypergraph, as follows. For each partition matroid ℓ = 1, . . . , L, we create a group

of items Mℓ, with one item for each i = 1, . . . ,mℓ whose starting inventory is kℓ(i). Each product

j ∈ N then requires from each group ℓ the item i ∈ {1, . . . ,mℓ} for which j ∈ N ℓ(i). Defining Aj

like this for all j ∈ N , it is direct to check that these products form an L-partite hypergraph.
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5.1 Algorithm and Proof for Theorem 5.1

Our algorithm has two initial processing steps. First it solves the LP relaxation (12)–(15), hereafter

letting xt(S) denote the values in an optimal solution. Although the LP as written could has

exponentially many variables due to the size of St, its dual has a separation oracle as long as for

any t and weights {r′j : j ∈ N}, one can efficiently solve the optimization problem

max
S∈St

∑
j

r′jϕt(j, S). (17)

(17) is trivially solved in OCA, because the optimal S would map each potential realization of Vt

to its corresponding product j with the maximum r′j , or no product if all weights are negative. (17)

also coincides exactly with the single-shot assortment optimization problem in NRM, which can

be solved for commonly-used choice models, leading to a separation oracle (Gallego et al., 2004).

By the equivalence of separation and optimization (Korte et al., 2011), tractability of (17) implies

that the LP relaxation can be solved in polynomial time.

The second initial processing step is to duplicate items and products to transform to an in-

stance where the items M all have an initial inventory of 1, and the products N are parti-

tioned into N1 ∪ · · · ∪ NT such that ϕt(j, S) > 0 only if j ∈ Nt. This would allow us to define

xj :=
∑

S∈St
ϕt(j, S)xt(S) for all t = 1, . . . , T, j ∈ Nt and satisfy the conditions of random-element

OCRS, noting that xj ≤ 1 must hold if initial inventories are 1. Moreover, if the original problem

instance had no substitution, then we would want Aj = Aj′ for any j, j′ ∈ Nt, for all t, in the

transformed instance. This is equivalent to the condition of |Nt| = 1 for all t and allows us to apply

a standard OCRS, where the equivalence is because an OCRS does not discriminate products based

on rj . In Appendix C.1, we describe a transformation that satisfies all of these properties.

Having completed the initial processing, our online algorithm is to, for each t:

1. Query the OCRS to obtain a random bit vector (Bj)j∈Nt , where Bj ∈ {0, 1} indicates whether

the OCRS would accept each product j ∈ Nt if it were to be the active product for t;

2. Play a (randomized) action from St such that the probability of selling each product j ∈ Nt

is xj if Bj = 1, and 0 if Bj = 0.

The OCRS guarantees E[Bj ] = α for all j, which would imply that every product j ∈ Nt gets sold
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w.p. αxj . This argument requires the independence of sales across time, because Bj at the current

time t depends on the inventory state, which in turn depends on the sales realizations before t.

Given this, the online algorithm has total expected reward
∑T

t=1

∑
j∈Nt

αrjxj , which equals α · LP

as claimed in Theorem 5.1. We formally prove the validity of this online algorithm and the OCRS

guarantee in Appendix C.2, which also requires the following lemma for substitutable actions.

Lemma 5.2. Suppose that ϕt defines substitutable actions for selling products in Nt using actions

in St. Then for all S ∈ St and F ⊆ Nt, one can compute a randomized S′ such that

ES′ [ϕt(j, S
′)] = 0 ∀j ∈ F ;

ES′ [ϕt(j, S
′)] = ϕt(j, S) ∀j /∈ F. (18)

(18) differs from the original condition (11) for substitutable actions by saying that we can sell

each non-forbidden product w.p. exactly ϕt(j, S), after averaging over a random recourse action S′.

This is important for OCRS’s, because selling non-forbidden products w.p. higher than originally

prescribed may cause other products to become infeasible with too high probability. Lemma 5.2 is

not necessary for the OCA problem, as noted earlier, because the recourse action S′ by definition

will satisfy (11) as equality.

Results similar to Lemma 5.2 have appeared in various revenue management papers where the

action is to offer an assortment. The need for such a result arises in revenue management with

reusable resources, in which it has been called “sub-assortment sampling” (Feng et al., 2022) and

“probability match” (Goyal et al., 2020). A similar result was used earlier to ensure that items are

not sold with probability higher than intended in Chen et al. (2023), in which it was called random

assortment from “breakpoints”. These results are proved based on the following idea—if (11) is

satisfied as strict inequality for some products, then one can add the greatest violator to F with

some probability to scale down its selling probability, and repeat until (11) is satisfied as equality

for all products. In doing so, one generates a sequence of breakpoints that defines a randomized

F , which induces a randomized sub-assortment S′, ultimately matching the original probabilities

ϕt(j, S) for all j /∈ F . We provide a self-contained proof of Lemma 5.2 in Appendix C.3, and this

completes our reduction.
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6 Conclusion and Open Questions

We recap the main contributions of this paper. First, we beat the benchmark of 1/(1+L) that has

appeared in many papers about Network Revenue Management or Online Combinatorial Auctions.

Also, we demonstrate that the subtlety of whether elements are random can affect the best-possible

guarantees in OCRS. Finally, we define an extended notion of “random-element” OCRS that is

necessary to handle the general NRM and OCA problems in a black-box manner.

We end by posing a few open questions. First, one could also distinguish between standard vs.

random-element OCRS under other arrival orders, e.g. random order. There, a natural benchmark

(the equivalent of 1/(1 + L)) would be (1 − exp(−L))/L, as established in the IID setting by

Marinkovic et al. (2023). Second, our analysis does not naturally lend itself to improved guarantees

if all items have large initial inventories. It may be interesting to interpolate between our guarantees

and Amil et al. (2023), whose guarantees for NRM do improve with large inventories. Finally, our

counterexample has the curious property of relying on a finite affine plane of order L. Might it be

possible to beat 1/7 for random-element OCRS when L = 6?

Acknowledgements. The authors thank Huseyin Topaloglu for insightful early discussions.
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A Supplement to Section 2

The policy π defined in Definition 2.1 cannot be implemented directly because it requires the

knowledge of the probability P(Fj) for every product j. In what follows, we provide a policy with

the aid of simulation so that it can be implemented.

Definition A.1. For each time t, run a Monte Carlo simulation with K trails: starting from time

τ = 1 to τ = t − 1, implement the policy π in Definition 2.1 with P̂(Fj) for j ∈ N1 ∪ · · · ∪ Nt−1

and set α = (1− ε)/(1 +L). Let P̂(Fj) denote the empirical estimation of the probability that the

product j ∈ Nt is available, that is,

P̂(Fj) =
1

K

∑
k∈[K]

1{product j is available in k-th trial}.

Let π̂ denote the simulation algorithm and P̂(Fj) denote the output of the simulation algorithm.

Moreover, let Pπ̂(Fj) denote the true probability that product j is available under policy π̂, which

is a random variable depending on the previous sample paths. Note that by construction, P̂(Fj)

is an unbiased estimate of Pπ̂(Fj). Let V π̂ denote the expected rewards of the simulation based

policy π̂.

Lemma A.1. For any time t, given that α = (1− ε)/(1 +L) and Pπ̂(Fj)/P̂ (Fj) ≤ 1/(1− ε) for all

τ < t and j ∈ Nτ , it holds that Pπ̂(Fj) ≥ 1/(1 + L) for any j ∈ Nt.

Proof of Lemma A.1. Note that for any j ∈ Nt,

Pπ̂ (Fj) =Pπ̂
(
∩i∈AjFti

)
= 1− Pπ̂

(
∪i∈Aj F̄ti

)
≥ 1−

∑
i∈Aj

Pπ̂
(
F̄ti

)
=1−

∑
i∈Aj

1− ε

1 + L

t−1∑
τ=1

∑
j′∈Nτ :i∈Aj′

xj′ ·
1

P̂(Fj′)
· Pπ̂

(
Fj′
)

≥1−
∑
i∈Aj

1− ε

1 + L

t−1∑
τ=1

1

1− ε

∑
j′∈Nτ :i∈Aj′

xj′

≥1− 1

1 + L
|Aj | ≥

1

1 + L
.

where the first inequality holds due to the assumption.
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Theorem A.2. For any ε ∈ (0, 1), by taking K = 3(1+L)
ε2

log
(
2TM
ε

)
, it holds that V π̂ ≥ (1−ε)2

1+ε
1

1+LV
∗.

Proof of Theorem A.2. By union bound and Bayes rule, we have

P

(
1

1 + ε
≤ Pπ̂(Fj)

P̂(Fj)
≤ 1

1− ε
,∀j

)

=P
(∣∣∣Pπ̂(Fj)− P̂(Fj)

∣∣∣ ≤ εPπ̂(Fj),∀j
)

=
T∏
t=1

P
(∣∣∣Pπ̂(Fj)− P̂(Fj)

∣∣∣ ≤ εPπ̂(Fj),∀j ∈ Nt

∣∣∣∣∣∣Pπ̂(Fj)− P̂(Fj)
∣∣∣ ≤ εPπ̂(Fj),∀(τ < t, j ∈ Nτ )

)
≥1−

T∑
t=1

P
(
∃j ∈ Nt,

∣∣∣Pπ̂(Fj)− P̂(Fj)
∣∣∣ > εPπ̂(Fj)

∣∣∣∣∣∣Pπ̂(Fj)− P̂(Fj)
∣∣∣ ≤ εPπ̂(Fj), ∀(τ < t, j ∈ Nτ )

)
≥1−

T∑
t=1

∑
j∈Nt

P
(∣∣∣Pπ̂(Fj)− P̂(Fj)

∣∣∣ > εPπ̂(Fj)
∣∣∣∣∣∣Pπ̂(Fj)− P̂(Fj)

∣∣∣ ≤ εPπ̂(Fj), ∀(τ < t, j ∈ Nτ )
)

(a)

≥1−
T∑
t=1

∑
j∈Nt

2Eπ̂

[
exp

(
−K

3
ε2Pπ̂(Fj)

)∣∣∣∣∣∣∣Pπ̂(Fj)− P̂(Fj)
∣∣∣ ≤ εPπ̂(Fj),∀(τ < t, j ∈ Nτ )

]
(b)

≥1− 2TM exp

(
− ε2K

3(1 + L)

)
,

where inequality (a) follows from Chernoff bound and inequality (b) follows from Lemma A.1.

Therefore, by taking

K =
3(1 + L)

ε2
log

(
2TM

ε

)
,

we have

P

(
1

1 + ε
≤ Pπ̂(Fj)

P̂(Fj)
≤ 1

1− ε
,∀j

)
≥ 1− ε.

Thus, we have

V π̂ = Eπ̂

 T∑
t=1

M∑
j=1

rjZj

 =
T∑
t=1

∑
j∈Nt

rjEπ̂ [Zj ]

≥
T∑
t=1

∑
j∈Nt

rjP

(
1

1 + ε
≤ Pπ̂(Fj)

P̂(Fj)
≤ 1

1− ε

)
Eπ̂

[
Zj

∣∣∣∣∣ 1

1 + ε
≤ Pπ̂(Fj)

P̂(Fj)
≤ 1

1− ε

]

=α

T∑
t=1

∑
j∈Nt

rjxjP

(
1

1 + ε
≤ Pπ̂(Fj)

P̂(Fj)
≤ 1

1− ε

)
Eπ̂

[
Pπ̂(Fj)

P̂(Fj)

∣∣∣∣∣ 1

1 + ε
≤ Pπ̂(Fj)

P̂(Fj)
≤ 1

1− ε

]

≥ 1− ε

(1 + ε)(1 + L)

T∑
t=1

∑
j∈Nt

rjxjP

(
1

1 + ε
≤ Pπ̂(Fj)

P̂(Fj)
≤ 1

1− ε

)
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≥(1− ε)2

(1 + ε)

V ∗

1 + L
.

B Supplement to Section 4

Proof of Lemma 4.1. Since each element is consisted of at most L items and Aj ∩Aj′ = ∅, we have∣∣Aj ∪Aj′
∣∣ ≤ 2L. For simplicity, let L =

∣∣Aj ∪Aj′
∣∣ ≥ 2 and assume the L items are indexed by

{1, . . . ,L} without loss of generality. We can then partition the set {j′′ : Aj′′ ∩ (Aj ∪Aj′) ̸= ∅} into

L disjoint sets (Ji)
L
i=1 such that

Ji ⊆ {j : i ∈ Aj},
∑
j∈Ji

xj ≤ 1, ∀i = 1, . . . ,L.

Moreover, for any product j ∈ Ji, let t be the time such that j ∈ Nt, recall that Zj denote the

event that product j is accepted and we have P(Zj) = αxj . Therefore, it holds that

P (Fj) = P
(
∩i′∈Aj

Fti′
)
≥ 1−

∑
i′∈Aj

P(F̄ti′)

≥1−
∑
i′∈Aj

∑
τ<t

∑
j′∈Nτ :i′∈Aj′

P(Zj′) ≥ 1−
∑
i′∈Aj

T∑
t=1

∑
j′∈Nt:i′∈Aj′

P(Zj′) +
∑

j′∈Nτ :i∈Aj′

P(Zj′)

≥1− αL+ α
∑

j′∈Nt:i∈Aj′

xj′ ≥ 1− αL+ α
∑

j′∈Nt∩Ji

xj′ ,

where the second inequality holds because the item i′ is available at time t only if no associated

product j′ has been accepted before, and the last inequality holds because Ji ⊆ {j : i ∈ Aj}. The

inequality above implies that

T∏
τ=1

1−
∑

j′′∈Nτ :Aj′′∩(Aj∪Aj′) ̸=∅

αxj′′

P(Fj′′)


=

T∏
τ=1

1−
L∑
i=1

∑
j′′∈Nτ∩Ji

αxj′′

P(Fj′′)
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≥
T∏

τ=1

1−
L∑
i=1

∑
j′′∈Nτ∩Ji

αxj′′

1− αL+ α
∑

j′∈Nτ∩Ji
xj′


=

T∏
τ=1

1−
L∑
i=1

α
∑

j′∈Nτ∩Ji
xj′

1− αL+ α
∑

j′∈Nτ∩Ji
xj′

 .

To provide a lower bound to the term above, we consider an optimization problem. Note that

L∑
i=1

∑
j′∈Nτ∩Ji

xj′ ≤
∑
j′∈Nτ

xj′ ≤ 1,∀τ.

Moreover, by the feasibility constraint, it also holds that

T∑
τ=1

∑
j′∈Nτ∩Ji

xj′ ≤
T∑

τ=1

∑
j′∈Nτ :i∈Aj′

xj′ =
∑

j′:i∈Aj′

xj′ ≤ 1,∀i.

Let yτi =
∑

j′∈Nτ∩Ji xj′ , it is sufficient to the optimization problem as follows:

min
yτi≥0

T∏
τ=1

(
1−

L∑
i=1

αyτi
1− αL+ αyτi

)
s.t.

L∑
i=1

yτi ≤ 1, ∀τ,
T∑

τ=1

yτi ≤ 1, ∀i,

=exp

(
min
yτi≥0

T∑
τ=1

log

(
1−

L∑
i=1

αyτi
1− αL+ αyτi

))
s.t.

L∑
i=1

yτi ≤ 1, ∀τ,
T∑

τ=1

yτi ≤ 1, ∀i,

≥ exp

(
min
yτi≥0

T∑
τ=1

log

(
1−

L∑
i=1

αyτi
1− αL+ αyτi

))
s.t.

L∑
i=1

yτi ≤ 1, ∀τ,
T∑

τ=1

L∑
i=1

yτi ≤ L.

Note that fix a time τ , it is optimal to set (yτi)
L
i=1 equally because the function

L∑
i=1

αyτi
1−αL+αyτi

is

concave in (yτi)
L
i=1. To see this, it is sufficient to show that function g(x) = αx

1−αL+αx is concave.

Note that α is chosen so that 1− αL > 0, thus g(x) = 1− 1−αL
1−αL+αx , which is concave. Therefore,

the optimization problem above can be further lower bounded by

exp

(
min
yτ≥0

T∑
τ=1

log

(
1− αyτ

1− αL+ αyτ/L

))
s.t. yτ ≤ 1, ∀τ,

T∑
τ=1

yτ ≤ L. (19)
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We claim that f(x) = log
(
1− αx

1−αL+αx/L

)
is also a concave function when 0 ≤ α ≤ 1/L. Note

that

f ′(x) =
1

1− αx
1−αL+αx/L

−α(1− αL+ αx/L) + α2x/L
(1− αL+ αx/L)2

=
−α(1− αL)

(1− αL+ αx/L)(1− αL− (L − 1)αx/L)
,

f ′′(x) =
α2(1− αL)

L(1− αL+ αx/L)2(1− αL− (L − 1)αx/L)2

(
(L − 2) (αL− 1)− 2(L − 1)αx

L

)
≤ 0.

Therefore, the optimization problem (19) is to minimize a concave function with linear constraints,

thus the optimal solution is obtained at an extreme point of the feasible region. Moreover, the

coefficient matrix is totally unimodular, therefore, all vertices are integral. If T ≤ L, the optimal

value is
(
1− α

1−αL+α/L

)T
≥
(
1− α

1−αL+α/L

)L
, otherwise, the optimal value is

(
1− α

1−αL+α/L

)L
.

Therefore, we can conclude that a lower bound to Problem (19) is
(
1− α

1−αL+α/L

)L
. Moreover,

this bound is decreasing in L and we have L ≤ 2L, thus the result follows.

Proof of Lemma 4.2. Recall that in the worst case, all products intersect with the set of items

{1, . . . , L} at most once, then we have

L∑
i=1

∑
i′ ̸=i

T∑
t=1

∑
t′ ̸=t

∑
j∈Nt,j′∈Nt′ :
Aj∩Aj′=∅
i∈Aj ,i

′∈Aj′

xjxj′ =

L∑
i=1

∑
i′ ̸=i

∑
(j,j′):

Aj∩Aj′=∅
i∈Aj ,i

′∈Aj′

xjxj′

=
L∑
i=1

∑
i′ ̸=i

∑
j:i∈Aj

∑
j′:i′∈Aj′

xjxj′
(
1− 1

{
Aj ∩Aj′ ̸= ∅

})

=
L∑
i=1

∑
i′ ̸=i

 ∑
j:i∈Aj

xj

 ∑
j′:i′∈Aj′

xj′

− L∑
i=1

∑
i′ ̸=i

∑
j:i∈Aj

∑
j′:i′∈Aj′

xjxj′1
{
Aj ∩Aj′ ̸= ∅

}

=L(L− 1)−
L∑
i=1

∑
i′ ̸=i

∑
j:i∈Aj

∑
j′:i′∈Aj′

xjxj′1
{
Aj ∩Aj′ ̸= ∅

}

≥L(L− 1)−
L∑
i=1

∑
i′ ̸=i

∑
j:i∈Aj

∑
i′′∈Aj\{i}

∑
j′:i′,i′′∈Aj′

xjxj′

=L(L− 1)−
L∑
i=1

∑
i′′∈[N ]\{1,...,L}

 ∑
j:i,i′′∈Aj

xj

∑
i′ ̸=i

∑
j′:i′,i′′∈Aj′

xj′


︸ ︷︷ ︸

(a)

.
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where the first equality holds because |Nt| = 1 for any t in the standard OCRS model and the last

equality holds because if i ∈ Aj for i ∈ {1, . . . , L}, then Aj\{i} ∩ {1, . . . , L} = ∅. In order to upper

bound term (a), for simplicity, let

αii′′ =
∑

j:i,i′′∈Aj

xj , βii′′ =
∑
i′ ̸=i

∑
j′:i′,i′′∈Aj′

xj′ .

Note that for any fixed i ∈ {1, . . . , L}, it holds that

αii′′ + βii′′ =
∑

j:i,i′′∈Aj

xj +
∑
i′ ̸=i

∑
j:i′,i′′∈Aj′

xj′ =
L∑
i=1

∑
j:i,i′′∈Aj

xj ≤
∑

j:i′′∈Aj

xj ≤ 1, ∀i′′ ∈ [N ]\{1, . . . , L},

∑
i′′∈[N ]\[L]

αii′′ =
∑

i′′∈[N ]\[L]

∑
j:i,i′′∈Aj

xj =
∑

j:i∈Aj

∑
i′′∈[N ]\[L]

xj1{i′′ ∈ Aj} ≤ (L− 1)
∑

j:i∈Aj

xj ≤ (L− 1),

∑
i′′∈[N ]\[L]

βii′′ =
∑

i′′∈[N ]\[L]

∑
i′ ̸=i

∑
j:i′,i′′∈Aj

xj ≤
∑
i′ ̸=i

(L− 1)
∑

j:i′∈Aj

xj ≤ (L− 1)2.

Therefore, the optimization problem below provides an upper bound to term (a):

max
K,αk,βk

K∑
k=1

αkβk, s.t. αk + βk ≤ 1, ∀k,
K∑
k=1

αk ≤ L− 1,
K∑
k=1

βk ≤ (L− 1)2. (20)

We claim the optimal value to Problem (20) is (L − 1)2/L, which is achieved at αk = 1/L, βk =

1 − 1/L for all k and K = L(L − 1). We first show it is sufficient to consider K∗ = L(L − 1).

Suppose K > L(L−1), let (α∗
k, β

∗
k)k denote an optimal solution. Without loss of generality, assume

α∗
1 ≥ α∗

2 ≥ . . . α∗
K , then (β∗

k)k is optimal when β∗
k is set as large as possible following the index

order until the sum reaches (L − 1)2. That is, there exists an index k∗ where k∗ is the smallest

number such that for any k ≥ k∗ + 1, β∗
k = 0 and

β∗
1 = 1− α∗

1, β∗
2 = min

{
1− α∗

2, (L− 1)2 − β∗
1

}
, . . . , β∗

k∗ = min

{
1− α∗

k∗ , (L− 1)2 −
k∗−1∑
k=1

β∗
k

}
.

By the definition of k∗, it holds that

β∗
k = 1− α∗

k,∀k < k∗, (L− 1)2 −
k∗−1∑
i=1

β∗
i ≤ 1− α∗

k∗ ,
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otherwise, if β∗
k ̸= 1 − α∗

k for some k < k∗, then β∗
k+1 = 0, contradicting to the fact that k∗ is the

smallest index. Now suppose k∗ ≥ L(L− 1) + 1 and α∗
L(L−1)+1 > 0, then we have

β∗
L(L−1) = 1− α∗

L(L−1) ≤ (L− 1)2 −
L(L−1)−1∑

k=1

β∗
k = (L− 1)2 −

L(L−1)−1∑
k=1

(1− α∗
k),

which implies that

(L− 1)2 ≥
L(L−1)∑
k=1

(1− α∗
k) = L(L− 1)−

L(L−1)∑
k=1

α∗
k > L(L− 1)− (L− 1) = (L− 1)2,

which leads to a contradiction. Thus, we either have k∗ ≤ L(L − 1) or α∗
L(L−1)+1 = 0. In both

cases, since α∗
kβ

∗
k = 0 for any k > L(L − 1), it is sufficient to consider K∗ = L(L − 1). Therefore,

the optimization problem (20) can be reduced to

max
αk,βk

L(L−1)∑
k=1

αkβk, s.t. αk + βk ≤ 1,∀k,
L(L−1)∑
k=1

αk ≤ L− 1,

L(L−1)∑
k=1

βk ≤ (L− 1)2.

Note that it is sufficient to consider the case where all constraints are tight. Therefore, the problem

is equivalent to

min
αk

L(L−1)∑
k=1

α2
k, s.t.

L(L−1)∑
k=1

αk = L− 1.

Since the problem is to minimize a convex function, we have α∗
k = 1/L for any k. Thus, we can

conclude that term (a) is upper bounded by (L− 1)2.

Proof of Lemma 4.4. Analogous to the proof of Lemma 4.2, we have

L∑
i=1

∑
i′ ̸=i

T∑
t=1

∑
t′ ̸=t

∑
j∈Nt,j′∈Nt′
Aj∩Aj′=∅
i∈Aj ,i

′∈Aj′

xjxj′

=
L∑
i=1

∑
i′ ̸=i

T∑
t=1

T∑
t′=1

∑
j∈Nt,j′∈Nt′
Aj∩Aj′=∅
i∈Aj ,i

′∈Aj′

xjxj′ −
L∑
i=1

∑
i′ ̸=i

T∑
t=1

∑
j∈Nt,j′∈Nt

Aj∩Aj′=∅
i∈Aj ,i

′∈Aj′

xjxj′

38



=

L∑
i=1

∑
i′ ̸=i

∑
(j,j′):

Aj∩Aj′=∅
i∈Aj ,i

′∈Aj′

((
T∑
t=1

xj1{j ∈ Nt}

)(
T∑
t=1

xj′1{j′ ∈ Nt}

)
−

T∑
t=1

xjxj′1{j, j′ ∈ Nt}

)

(i)
=

L∑
i=1

∑
i′ ̸=i

∑
(j,j′):

Aj∩Aj′=∅
i∈Aj ,i

′∈Aj′

(
xjxj′ −

T∑
t=1

xjxj′1{j, j′ ∈ Nt}

)

=
L∑
i=1

∑
i′ ̸=i

∑
j:i∈Aj

∑
j′:i′∈Aj′

(
xjxj′ −

T∑
t=1

xjxj′1{j, j′ ∈ Nt}

)(
1− 1

{
Aj ∩Aj′ ̸= ∅

})

≥
L∑
i=1

∑
i′ ̸=i

∑
j:i∈Aj

∑
j′:i′∈Aj′

(
xjxj′ −

T∑
t=1

xjxj′1{j, j′ ∈ Nt} − xjxj′1
{
Aj ∩Aj′ ̸= ∅

})

=

L∑
i=1

∑
i′ ̸=i

 ∑
j:i∈Aj

xj

 ∑
j′:i′∈Aj′

xj′

− L∑
i=1

∑
i′ ̸=i

T∑
t=1

 ∑
j∈Nt:i∈Aj

xj

 ∑
j′∈Nt:i′∈Aj′

xj′


−

L∑
i=1

∑
i′ ̸=i

∑
j:i∈Aj

∑
j′:i′∈Aj′

xjxj′1
{
Aj ∩Aj′ ̸= ∅

}

=L(L− 1)−
L∑
i=1

∑
i′ ̸=i

T∑
t=1

 ∑
j∈Nt:i∈Aj

xj

 ∑
j′∈Nt:i′∈Aj′

xj′

− L∑
i=1

∑
i′ ̸=i

∑
j:i∈Aj

∑
j′:i′∈Aj′

xjxj′1
{
Aj ∩Aj′ ̸= ∅

}

≥L(L− 1)−
L∑
i=1

∑
i′ ̸=i

T∑
t=1

 ∑
j∈Nt:i∈Aj

xj

 ∑
j′∈Nt:i′∈Aj′

xj′

− L∑
i=1

∑
i′ ̸=i

∑
j:i∈Aj

∑
i′′∈Aj\{i}

∑
j′:i′,i′′∈Aj′

xjxj′

(ii)
=L(L− 1)−

L∑
i=1

∑
i′ ̸=i

T∑
t=1

 ∑
j∈Nt:i∈Aj

xj

 ∑
j′∈Nt:i′∈Aj′

xj′


︸ ︷︷ ︸

(a)

−
L∑
i=1

∑
i′′∈[N ]\[L]∪Mi

 ∑
j:i,i′′∈Aj

xj


 ∑

i′ ̸=i:
i′ /∈Mℓ if i′′∈Mℓ

∑
j′:i′,i′′∈Aj′

xj′


︸ ︷︷ ︸

(b)

,

where equality (i) holds because Nt are disjoint across time t and equality (ii) holds because all

products intersect with items {1, . . . , L} at most once and every product has exactly one item from

the set Mℓ. We now analyze the two terms (a) and (b) separately.
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For term (a), let yti =
∑

j∈Nt:i∈Aj
xj for simplicity, then for any i ∈ {1, . . . , L}, it holds that

T∑
t=1

yti =
T∑
t=1

∑
j∈Nt:i∈Aj

xj =
∑

j:i∈Aj

xj = 1,

T∑
t=1

∑
i′ ̸=i

yti′ =
T∑
t=1

∑
i′ ̸=i

∑
j∈Nt:i′∈Aj

xj =
∑
i′ ̸=i

∑
j:i′∈Aj

xj = L− 1,

L∑
i=1

yti =
L∑
i=1

∑
j∈Nt:i∈Aj

xj ≤
∑
j∈Nt

xj ≤ 1,∀t.

To upper bound term (a), for any fixed i, we consider the optimization problem:

max

T∑
t=1

yti

∑
i′ ̸=i

yti′

 , s.t.

T∑
t=1

yti ≤ 1,

T∑
t=1

∑
i′ ̸=i

yti′ ≤ (L− 1),

L∑
i=1

yti ≤ 1, ∀t.

Similar to the proof of Lemma 4.2, it is sufficient to consider T = L, the optimal value is (L− 1)/L

achieved at yti = 1/L. Thus, it follows that term (a) is upper bounded by L− 1.

For term (b), note that for any fixed i, since every product j has exactly one item from the set

Mℓ, it holds that

∑
i′′∈[N ]\[L]∪Mi

∑
j:i,i′′∈Aj

xj =
∑
ℓ ̸=i

∑
i′′∈Mℓ

∑
j:i,i′′∈Aj

xj =
∑
ℓ ̸=i

∑
j:i∈Aj

xj = L− 1,

and

∑
i′′∈[N ]\[L]∪Mi

∑
i′ ̸=i:

i′ /∈Mℓ if i′′∈Mℓ

∑
j′:i′,i′′∈Aj′

xj′

=
∑
ℓ̸=i

∑
i′′∈Mℓ

∑
i′ /∈{i,ℓ}

∑
j′:i′,i′′∈Aj′

xj′ =
∑
ℓ̸=i

∑
i′ /∈{i,ℓ}

∑
j′:i′∈Aj′

xj′ = (L− 2)(L− 1).

Moreover, for any fixed i′′, we have

∑
j:i,i′′∈Aj

xj +
∑
i′ ̸=i:

i′ /∈Mℓ if i′′∈Mℓ

∑
j′:i′,i′′∈Aj′

xj′ =
∑

j:i′′∈Aj

xj ≤ 1.
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For simplicity, let

αii′′ =
∑

j:i,i′′∈Aj

xj , βii′′ =
∑
i′ ̸=i:

i′ /∈Mℓ if i′′∈Mℓ

∑
j′:i′,i′′∈Aj′

xj′ ,

for any fixed i, we consider the optimization problem:

max
∑

i′′∈[N ]\[L]

αii′′βii′′ ,

s.t.
∑

i′′∈[N ]\[L]

αii′′ = L− 1,∀i,
∑

i′′∈[N ]\[L]

βii′′ = (L− 2)(L− 1), ∀i, αii′′ + βii′′ ≤ 1,∀i, i′′.

Again, similar to the proof of Lemma 4.2, the optimal value is L − 2 which is obtained when

αii′′ = 1/(L− 1) and βii′′ = (L− 2)/(L− 1), and it then follows that term (b) is upper bounded by

L(L− 2).

In conclusion, we have that

L∑
i=1

∑
i′ ̸=i

T∑
t=1

∑
t′ ̸=t

∑
j∈Nt,j′∈Nt′
Aj∩Aj′=∅
i∈Aj ,i

′∈Aj′

xjxj′ ≥ L(L− 1)− (L− 1)− L(L− 2) = 1.

C Supplement to Section 5

C.1 Second Initial Processing Step

Here we describe how to transform an abstract problem with substitutable actions into a problem

fitting into the OCRS framework. Let (xt(S))t,S denote an optimal solution to the LP relaxation

(5.4). To start with, we first label the initial products j = 1, . . . , N and items i = 1, . . . ,M , and

relabel each unit of items, e.g., let ik denote the k-th unit for item i. Throughout this section,

we treat different units of the same item as “different” items so that all items have an initial

inventory of 1. Algorithm 1 describes the processing step in detail. Put it briefly, we split original

items with multiple initial inventories into items with initial inventory 1 and then we reallocate

all active probability xj =
∑

S∈St
ϕt(j, S)xt(S) into items by creating dummy products (jℓ denotes
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ℓ-th product j) if necessary.

Algorithm 1: Second Initial Processing Step

Input : Nt = ∅, ∀t, ℓ(j) = 1,∀j, k(i) = 1, ∀i, cik = 1, ∀ik.
1 For t = 1, . . . , T
2 For j = 1, . . . , N
3 Let xj =

∑
S∈St

ϕt(j, S)xt(S)

4 While xj > 0
5 If mini∈Aj cik(i) ≥

∑
S∈St

ϕt(j, S)xt(S)

6 cik(i) ← cik(i) −
∑

S∈St
ϕt(j, S)xt(S), ∀i ∈ Aj

7 xj ← 0, Ajℓ(j) = ∪i∈Aj{k(i)} and Nt ← Nt ∪ {jℓ(i)}
8 Else
9 δ = mini∈Aj cik(i) −

∑
S∈St

ϕt(j, S)xt(S)

10 cik(i) ← cik(i) − δ, If cik(i) = 0, k(i)← k(i) + 1, ∀i ∈ Aj

11 xj ← xj − δ, ℓ(j)← ℓ(j) + 1, Nt ← Nt ∪ {jℓ(j)}
12 End
13 End
14 End (j)
15 End (t)
Output: Nt,∀t, Ajℓ ,∀jℓ.

By Algorithm 1, it follows immediately that the active probabilities of all products satisfy

the feasibility constraints in expectation and the sum of active probabilities per period is less

than 1. Therefore, the fluid relaxation of the reduced problem provides an upper bound to the

original problem, and for any policy provides a constant approximation to this problem against the

corresponding fluid LP, it provides same constant approximation to the original problem.

Furthermore, note that a dummy product is created only if an unit is “overflowed” (Step 10

and 11 in Algorithm 1). In addition, it holds that
∑

S∈St
xt(S) = 1, ∀t. Therefore, for every period

t, it holds that

∑
j:i∈Aj

∑
S∈St

ϕt(j, S)xt(S) =
∑
S∈St

 ∑
j:i∈Aj

ϕt(j, S)

xt(S) ≤
∑
S∈St

xt(S) = 1,∀i ∈M,

which implies that each item i ∈ M can be consumed for at most one unit and thus there can be

at most one “overflow” for each item i. Hence, there are at most M dummy products created for

each period, which implies that the reduced problem is still polynomial sized.

Finally, if the original problem instance had no substitution, then by definition, for any time

step t the products j that can have xj > 0 must all have identical item sets Aj . Therefore, any j
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that Algorithm 1 can add to Nt consumes the same bundle of items, allowing us to apply standard

OCRS.

C.2 Proof of Theorem 5.1

Recall that xj =
∑

S∈St
ϕt(j, S)xt(S) for all t = 1, . . . , T and j ∈ Nt. By the assumptions of the

transformed instance, LP constraint (13) implies that
∑T

t=1

∑
j∈Nt:i∈Aj

xj ≤ 1 for all i ∈ M , and

LP objective (12) equals
∑T

t=1

∑
j∈Nt

rjxj . For all t, we also have that

∑
j∈Nt

xj =
∑
S∈St

xt(S)
∑
j∈Nt

ϕt(j, S)

≤
∑
S∈St

xt(S) · (1)

= 1,

where the inequality applies the assumption that
∑

j ϕt(j, S) ≤ 1 in Definition 5.1, and the final

equality applies LP constraint (14).

Therefore, vector (xj)j∈N satisfies the conditions of a random-element OCRS for L-bounded

products. The OCRS, if α-selectable, is able to accept every j w.p. αxj , while only accepting active

products and satisfying the item feasibility constraints. This can be re-interpreted as follows. For

each t and j ∈ Nt, let Xj indicate whether j is active, i.e. E[Xj ] = xj and
∑

j∈Nt
Xj ≤ 1 w.p. 1.

For each t, based on its present state, the OCRS can pre-decide whether to accept each product

j ∈ Nt if it were to be active, indicated by Bj ∈ {0, 1}. Product j is then accepted if and only

if BjXj = 1. The OCRS guarantees that E[BjXj ] = αxj , which equals E[Bj ]E[Xj ] because Xj is

independent from everything else. Cancelling because E[Xj ] = xj , we deduce that E[Bj ] = α.

We use these random bits (Bj)j∈Nt in the online algorithm. As indicated in step 2 of the

algorithm, conditional on (Bj)j∈Nt , we would like to play a randomized action so that the prob-

ability of selling each product j ∈ Nt is xjBj . To show that this is possible, recall that xj =∑
S∈St

ϕt(j, S)xt(S). For each S ∈ St, we apply Lemma 5.2 with forbidden product set F := {j ∈

Nt : Bj = 0} to find a randomized recourse action S′ such that ES′ [ϕt(j, S
′)] = ϕt(j, S)Bj . There-

fore, if we play the mixture of randomized resource actions S′ for different original actions S ∈ St
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weighted by xt(S), then the probability of selling each product j ∈ Nt would be the desired

∑
S∈St

xt(S)(ϕt(j, S)Bj) = xjBj .

Finally, we must show that the state evolution in the actual problem is consistent with the state

evolution expected by the OCRS. We can define the following coupling: in the actual problem, for

each t, product j ∈ Nt is sold if and only if XjBj = 1. Conditional on any realization (Bj)j∈Nt , we

will indeed see that product j is sold w.p. 0 if Bj = 0, and w.p. xj if Bj = 1, correlated across j

so that at most one product is sold. Moreover, the realization of which product (if any) is sold is

independent from everything else, which is consistent with the desired state evolution in the actual

problem. Therefore, the state in the actual problem (where we cannot see whether products are

“active” before deciding accept/reject) can be coupled with the state in the OCRS, and hence the

OCRS guarantee which implies E[Bj ] = α for all j can be applied. Moreover, the OCRS guarantees

that Bj = 0 whenever j is infeasible, leading to a valid algorithm in the actual problem that respects

the inventory constraints. This completes the proof.

C.3 Proof of Lemma 5.2

For any action S ∈ St and set of forbidden products F ⊆ Nt, since ϕt defines substitutable actions,

there exists an action S1 ∈ St such that

ϕt(j, S1) = 0, ∀j ∈ F, and ϕt(j, S1) ≥ ϕt(j, S), ∀j /∈ F.

Let J1 = argminj /∈F ϕt(j, S)/ϕt(j, S1), γ1 = minj /∈F ϕt(j, S)/ϕt(j, S1) and F1 = F ∪ J1. Note that

if there does not exist a product j /∈ F such that ϕt(j, S1) > ϕt(j, S), then by definition, we have

γ1 = 1, J1 = Nt\F and the action S1 satisfies the conditions. Suppose not, then Nt\F1 ̸= ∅ and we

proceed to the next iteration. Now consider the action S1 and the set F1, again by the substitutable

assumption, there exists an action S2 such that

ϕt(j, S2) = 0,∀j ∈ F1, and ϕt(j, S2) ≥ ϕt(j, S1) ≥ ϕt(j, S),∀j /∈ F1.
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Similarly, let

J2 = argmin
j /∈F1

(ϕt(j, S)− γ1ϕt(j, S1)) /ϕt(j, S2),

γ2 = min
j /∈F1

(ϕt(j, S)− γ1ϕt(j, S1)) /ϕt(j, S2),

and J2 = F1 ∪ J1. This process is repeated until the end of K-iteration if FK = Nt. Note that the

set Nt\F is finite and we remove at least one element in each iteration, therefore, this process must

terminate within finite steps.

Suppose the process terminates at K-th iteration. We now consider the randomized action S′

which offers action Sk with probability γk. We claim it is a well-defined randomized action which

satisfies the conditions we want. In order to show it is a well-defined randomized action, we need

to show γk ≥ 0 for any k ∈ [K] and
∑K

k=1 γk ≤ 1. We show the result by induction. Note that it

holds that 0 ≤ γ1 ≤ 1. Suppose that γk′ ≥ 0 for any k′ ≤ k and
∑k

k′=1 γk′ ≤ 1, now for k + 1-th

iteration, we have

γk+1 = min
j /∈Fk

ϕt(j, S)−
∑

k′≤k γk′ϕt(j, Sk′)

ϕt(j, Sk+1)
=

ϕt(jk, S)−
∑

k′≤k γk′ϕt(jk, Sk′)

ϕt(jk, Sk+1)
,

where jk ∈ Jk+1. Note that Jk+1 ⊆ Nt\Fk, thus jk /∈ Fk−1 and

γk = min
j /∈Fk−1

ϕt(j, S)−
∑

k′≤k−1 γk′ϕt(j, Sk′)

ϕt(j, Sk)
≤

ϕt(jk, S)−
∑

k′≤k−1 γk′ϕt(jk, Sk′)

ϕt(jk, Sk)
,

thus, it follows that

ϕt(jk, S)−
∑
k′≤k

γk′ϕt(jk, Sk′) ≥ 0,

and γk+1 ≥ 0. By our construction, it holds that for any product j /∈ Fk,

ϕt(j, Sk+1) ≥ ϕt(j, Sk) ≥ · · · ≥ ϕt(j, S1) ≥ ϕt(j, S),

therefore, it holds that

∑
k′≤k

γk′ϕt(j, Sk+1)−
∑
k′≤k

γk′ϕt(j, Sk′) ≤
∑
k′≤k

γk′ (ϕt(j, Sk+1)− ϕt(j, S)) ≤ ϕt(j, Sk+1)− ϕt(j, S),
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which implies

ϕt(j, S)−
∑
k′≤k

γk′ϕt(j, Sk′) ≤ ϕt(j, Sk+1)

1−
∑
k′≤k

γk′

 ,

and thus

γk+1 ≤ 1−
∑
k′≤k

γk′ .

Hence, we can conclude that the randomized action S′ is indeed well-defined. Finally, by our

construction, it holds that {Jk}k forms a partition to the set Nt\F . For any product j ∈ F , since

ϕt(j, Sk) = 0 for any k, thus ES′ [ϕt(j, S
′)] = 0. For any product j /∈ F , there exists k-th iteration

so that j ∈ Jk and by definition,

γk =
ϕt(j, S)−

∑
k′≤k−1 γk′ϕt(j, Sk′)

ϕt(j, Sk)
,

and thus ES′ [ϕt(j, S
′)] = ϕt(j, S) because ϕt(j, Sk′) = 0 for any k′ ≥ k + 1. This completes the

proof.
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