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BUILDING HAMILTONIAN CYCLES IN THE SEMI-RANDOM GRAPH

PROCESS IN LESS THAN 2n ROUNDS

ALAN FRIEZE, PU GAO, CALUM MACRURY, PAWE L PRA LAT, AND GREGORY B. SORKIN

Abstract. The semi-random graph process is an adaptive random graph process in which an
online algorithm is initially presented an empty graph on n vertices. In each round, a vertex u is
presented to the algorithm independently and uniformly at random. The algorithm then adaptively
selects a vertex v, and adds the edge uv to the graph. For a given graph property, the objective of
the algorithm is to force the graph to satisfy this property asymptotically almost surely in as few
rounds as possible.

We focus on the property of Hamiltonicity. We present an adaptive strategy which creates a
Hamiltonian cycle in αn rounds, where α < 1.81696 is derived from the solution to a system of
differential equations. We also show that achieving Hamiltonicity requires at least βn rounds, where
β > 1.26575.

1. Introduction and Main Results

The semi-random graph process was suggested by Peleg Michaeli, introduced formally in 2020 [4],
and studied recently [3, 18, 2, 10, 23, 21], especially in the context of Hamiltonian cycles [16, 17, 14].
It is an example of an adaptive random graph process, in that an algorithm has partial control over
which random edges are added in each step. Specifically, the algorithm begins with the empty
graph G0 on vertex set [n] = {1, . . . , n}, and in each step (or round) t ∈ N, a vertex ut is chosen
independently and uniformly at random (u.a.r.) from [n]. The algorithm is online, in that it is given
the graph Gt−1 and vertex ut and must select a vertex vt ∈ [n]\{ut} and add the edge (ut, vt) to Gt−1

to form Gt. Thus, it decides on vt without full knowledge of which vertices will be randomly drawn
in the future. In this paper, the goal of the online algorithm is to build a multigraph satisfying a
given graph property P as quickly as possible. Clearly, if the online algorithm chooses vt u.a.r. for
m ≥ 1 consecutive rounds, then this is the Erdős–Rényi random graph process with multi-edges.
The main focus in the literature is understanding how through intelligent decision-making, the
online algorithm can speed-up the appearance of certain graph properties P.

While the semi-random graph process has been studied extensively in recent years, discrete pro-
cesses in which an algorithm has partial control over its random steps have been studied previously.
One of the first such examples is the work of Azar et al. [1] in the context of the bin-packing prob-
lem. By allowing an algorithm a small amount of adaptivity, Azar et al. proved that the maximum
load on any bin can be reduced by an exponential factor in comparison to a purely random (and
non-adaptive) strategy. This phenomena has since been described as the “power of two choices”.

The Achlioptas process is another example of an adaptive random process; it was proposed by
Dimitris Achlioptas and first formally studied in [8]. The Achlioptas process, too, begins with the
empty graph G0 on vertex set [n]. In each round t ∈ N, the online algorithm is presented two
distinct edges e1

t , e
2
t drawn u.a.r. from the edges on vertex set [n] that were not previously chosen

(i.e., not in Gt−1). The online algorithm then chooses precisely one of e1
t , e

2
t , and then adds it to

Gt−1, yielding the graph Gt. In contrast to the semi-random process, the objective first considered
in [8] is to delay the construction of a graph satisfying a property P for as many rounds as possible.
Achlioptas asked what can be done if P corresponds to the existence of a giant component (i.e., a
connected component of size Ω(n)). Bohman and Frieze analyzed a greedy strategy which does not
build a giant component for 0.535n rounds, which is strictly larger than the threshold at which a
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giant component appears in the Erdős–Rényi random graph process [12]. Improvements have since
been made on determining the optimal algorithm for delaying the appearance of a giant component.
The best known lower bound of 0.829n is due to Spencer and Wormald [25], and the best known
upper bound of 0.944n is due to Cobârzan [11]. Numerous works have studied other properties
and extensions of the Achlioptas process. Most related to our work is [22], whose goal is to force
Gt to be Hamiltonian as quickly as possible. We refer the reader to the introduction of [13] for an
in-depth overview of the literature on the Achlioptas process.

1.1. Definitions. We now introduce some definitions and notation for the semi-random graph
process.

We formalize an online algorithm using a strategy S. A strategy S specifies for each n ≥ 1, a
sequence of functions (st)

∞
t=1, where for each t ∈ N, st(u1, v1, . . . , ut−1, vt−1, ut) is a distribution on

[n] \ {ut} which depends on the vertex ut, and the history of the process up until step t − 1 (i.e.,
u1, v1, . . . , ut−1, vt−1). Then, vt is chosen according to this distribution, and (ut, vt) is added to
GS

t−1(n), the multigraph constructed by S after the first t− 1 steps. If st is an atomic distribution,

then vt is determined by u1, v1, . . . , ut−1, vt−1, ut. We denote by (GS
i (n))ti=0 the sequence of random

multigraphs obtained by following the strategy S for t steps, and we shorten GS
t (n) to Gt or Gt(n)

when clear.
Suppose P is an increasing (i.e., monotone) graph property. Given a strategy S and a constant

0 < q < 1, let mP(S, q, n) be the minimum t ≥ 0 for which P[Gt ∈ P] ≥ q, where mP(S, q, n) := ∞
if no such t exists. Define

mP(q, n) = inf
S

mP(S, q, n),

where the infimum is over all strategies on [n]. As P is increasing, for each n ≥ 1, if 0 ≤ q1 ≤ q2 ≤ 1,
then mP(q1, n) ≤ mP(q2, n). Thus, the function q 7→ lim supn→∞mP(q, n) is non-decreasing, so
the limit

CP := lim
q→1−

lim sup
n→∞

mP(q, n)

n
(1)

is guaranteed to exist. The goal is typically to compute upper and lower bounds on CP for various
properties P.

Remark 1. Note that although CP is well defined for all increasing properties, it only gives useful
information if CP is not equal to 0 or ∞, i.e., if a linear number (in n) of steps is necessary and
sufficient to construct some graph in P. If CP is equal to 0 or ∞ then the property is not linear
and the definition (1) should be adapted, scaling mP(q, n) by an appropriate function of n rather
than n itself in the denominator.

1.2. Main Results: Upper Bound. In this paper, we focus on the property of having a Hamil-
tonian cycle, which we denote by HAM. It was shown in [9] that the the well-known 3-out process
generates a random graph that is Hamiltonian a.a.s. (asymptotically almost surely, i.e., with prob-
ability tending to 1 as n → ∞). The very first paper on the semi-random process, [4], showed that
it can simulate the k-out process, from which it follows that CHAM ≤ 3. A new upper bound was
obtained in [16] in terms of an optimal solution to an optimization problem whose value is believed
to be at most 2.61135 by numerical support.

The upper bound CHAM ≤ 3 obtained by simulating the 3-out process is non-adaptive. That is,
the strategy does not depend on the history of the semi-random process. The improvement in [16]
is adaptive but in a weak sense. The strategy consists of four phases, each lasting a linear number
of rounds, and the strategy is adjusted only at the end of each phase: for example, the algorithm
might identify vertices of low degree, and then focus on them during the next phase.

In the proceedings version [17] of this paper, a fully adaptive strategy was proposed: at every
step t, it pays attention to Gt−1 and ut. As expected, such a strategy creates a Hamiltonian cycle
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substantially faster, and it improves the upper bound from 2.61135 to 2.01678. A neat improvement
in [14] brings the upper bound down to 1.84887. In this paper, we combine all the ideas together
to reduce it further, to 1.81701.

Theorem 1.1. CHAM ≤ α ≤ 1.81701, where α is derived from a system of differential equations.

The numerical results presented in this paper were obtained using the Julia programming lan-
guage [7]. We would like to thank Bogumi l Kamiński from SGH Warsaw School of Economics for
helping us to implement it. The program is available on-line.1

1.3. Main Results: Lower Bound. Let us now turn to the lower bound. As observed in [4], if
Gt has a Hamiltonian cycle, then Gt has minimum degree at least 2; thus CHAM ≥ CP = ln 2+ln(1+
ln 2) ≥ 1.21973, where P is the property of having minimum degree 2. In [16], this was shown to not
be tight: it was increased by a numerically negligible 10−8. By investigating some specific structures
generated by the semi-random process, containing many edges that cannot simultaneously belong
to a Hamiltonian cycle, we improve the lower bound of ln 2 + ln(1 + ln 2) ≥ 1.21973 to 1.26575.
(This bound was already reported in the proceedings version [17] of this paper.) This is a much
stronger bound than that in [16], the structures exploited are different, and the proof is simpler.

Theorem 1.2. Let f(s) = 2+e−3s(s+1)
(

1 − s2

2 − s3

3 − s4

8

)

+e−2s
(

2s + 5s2

2 + s3

2

)

−e−s (3 + 2s),

and let β ≈ 1.26575 be the positive root of f(s) − 1 = 0. Then, CHAM ≥ β.

1.4. Further Related Works. The seminal paper [4] showed that the semi-random graph pro-
cess is general enough to simulate several well-studied random graph models by using appropriate
strategies. In the same paper, the process was studied for various natural properties such as having
minimum degree k ∈ N or having a fixed graph H as a subgraph. In particular, it was shown that
a.a.s. one can construct H in less than n(d−1)/dω rounds where d ≥ 2 is the degeneracy of G and
ω = ω(n) is any function that tends to infinity as n → ∞. This property was recently revisited
in [2], where a conjecture from [4] was proven for any graph H: a.a.s. it takes at least n(d−1)/d/ω
rounds to create H. The property of having cliques of order tending to infinity as n → ∞ was
investigated in [15]. In [21], k-factors and k-connectivity were studied.

Another property studied in the context of semi-random processes is that of having a perfect
matching, which we denote by PM. Since the 2-out process has a perfect matching a.a.s. [26], and
the semi-random process can simulate the 2-out process, we immediately get that CPM ≤ 2. By
simulating the semi-random process with another random graph process known to have a perfect
matching a.a.s. [20], the bound can be improved to 1 + 2/e < 1.73576 [4]. This bound was recently
improved by investigating another fully adaptive algorithm [18], giving the current best bound of
CPM < 1.20524. The same paper improves the lower bound observed in [4] of CPM ≥ ln(2) > 0.69314
to CPM > 0.93261. While the optimal value of CPM remains unknown, a general purpose theorem
is proven in [23] that identifies a sufficient condition for a property P to have a sharp threshold.
When P is HAM or PM, [23] use the theorem to establish the existence of sharp thresholds for these
properties.

Let us now discuss what is known about the property of containing a given spanning graph H as a
subgraph. It was asked by Noga Alon whether for any bounded-degree H, one can construct a copy
of H a.a.s. in O(n) rounds. This question was answered positively in a strong sense in [3], in which
it was shown that any graph with maximum degree ∆ can be constructed a.a.s. in (3∆/2 + o(∆))n
rounds and, if ∆ = ω(log(n)), in (∆/2 + o(∆))n rounds. Note that these upper bounds are
asymptotic in ∆; when ∆ is constant in n, such as for perfect matchings and Hamiltonian cycles,
they give no concrete bound.

Other adaptive random graph processes and variants of the semi-random graph process have
been considered in the literature. The semi-random tree process is introduced in [10], where in each

1https://math.torontomu.ca/~pralat/
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round, a random spanning tree of Kn is presented to the algorithm, who chooses one of the edges
to keep. In [24], k random vertices rather than just one are offered, and the algorithm chooses
one of them before creating an edge. In [23], a general definition of an adaptive random graph
process is proposed. By parameterizing it appropriately, one recovers the Achlioptas process, the
semi-random graph process, as well models of [10] and [24]. In [19], the vertices offered by the
process follow a random permutation. Finally, hypergraphs are investigated in [2].

2. Proof of Theorem 1.1

2.1. Algorithmic Preliminaries. In this section, we introduce some notation/terminology as
well as the basic ideas used in the design of all of our strategies. We say that vertex x ∈ [n] is
covered by ut arriving at round t, or that ut lands on x, provided ut = x. The main ingredient for
proving Theorem 1.1 is to specify a strategy which keeps “extending” or “augmenting” a path P
– as will be explained momentarily – as well as building a collection Y of edges, all vertex-disjoint
from one another and P , until all edges in Y are joined to P and P becomes Hamiltonian. Then,
with a few more steps (just o(n)), the Hamiltonian path P can be completed into a Hamiltonian
cycle.

Suppose that after t ≥ 0 steps, we have constructed the graph Gt which contains the path Pt and
the collection Yt of disjoint edges. Let V (Pt) and V (Yt) denote respectively the vertices in Pt and
in Yt, and Ut the vertices in neither. Denote the (induced) distance between vertices x, y ∈ V (Pt)
on the path Pt by dPt(x, y). We also define dPt(x,Q) := minq∈Q dPt(x, q), for x ∈ V (Pt) and
Q ⊆ V (Pt). In step t + 1, ut+1 ∈ Ut, V (Yt), or V (Pt):

• If ut+1 ∈ Ut, we extend the collection Yt by choosing vt+1 to be a different vertex in Ut

and adding ut+1vt+1 to Yt. (If |Ut| = 1, we simply “pass” on the round, choosing vt+1

arbitrarily and not using ut+1vt+1 for the construction of the Hamiltonian cycle. However,
this is unlikely to happen until the very end of the process, when we apply a different
strategy; see Section 2.4.) We call such a move a (greedy) Y-extension.

• If ut+1 ∈ V (Yt), an extension of Pt can be made by appending the Yt edge on ut+1 to an
end of Pt, and deleting it from Yt. Such a move is called a (greedy) path extension.

• If ut+1 ∈ V (Pt) we cannot perform a greedy path extension, but we can still choose vt+1 in a
way that will help us extend the path in future rounds. Specifically, choose vt+1 ∈ Ut∪V (Yt)
to be an isolated vertex or an edge endpoint; it could be chosen uniformly at random, though
we will use a more efficient strategy. Consider a future round i > t where ui+1 happens
to be a path neighbour of ut+1 (i.e., dPi

(ut+1, ui+1) = 1). In this case, if vt+1 ∈ Ui is an
isolated vertex, set vi+1 = vt+1, and replace the path edge {ut+1, ui+1} with the length-2
path (ut+1, vt+1 = vi+1, ui+1), thus making P one edge longer. If vt+1 ∈ V (Yi) belongs to
an isolated edge, choose vi+1 to be its neighbour, and replace the path edge {ut+1, ui+1}
with the length-3 path (ut+1, vt+1, vi+1, ui+1), making P two edges longer. Call either of
these cases a path augmentation.

2.2. Proof Overview. In order to prove Theorem 1.1, we analyze a strategy which proceeds in
three distinct stages. In the first stage, we execute DegreeGreedy, an algorithm which makes greedy
Y-extensions and path extensions whenever possible, and otherwise sets up path augmentation
operations for future rounds in a degree-greedy manner. During the execution of DegreeGreedy

some edges are coloured red or blue. In step t + 1, vt+1 is chosen amongst Ut ∪ V (Yt) that are
incident with the least number of blue edges. This degree-greedy decision is done to minimize the
number of coloured vertices which are destroyed when path augmentations and extensions are made
in later rounds. This stage lasts for N phases, where N is any non-negative integer that may be
viewed as the parameter of the algorithm (here a phase is a contiguous set of steps shorter than
the full stage). For the claimed (numerical) upper bound of Theorem 1.1, N is set to 100. Setting
smaller values of the parameter N—in particular, setting N = 0—yields an algorithm that is easier
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to analyse. Setting N > 100 can slightly improve the bound in Theorem 1.1, but the gain is rather
insignificant.

The output of the first phase are P and Y that have been constructed, together with the set
E of red edges (all blue edges will be discarded). The second stage take (P,Y, E) as input, and
execute a procedure called FullyRandomized, an algorithm which makes greedy Y-extensions or
path extensions whenever possible, and otherwise chooses vt+1 randomly amongst Ut ∪ V (Yt).
We execute FullyRandomized until we are left with εn vertices in Ut ∪ V (Yt), where ε = ε(n)
tends to 0 as n → ∞ arbitrarily slowly. (In practice, one can set ε to be an arbitrarily small
positive number when running this algorithm.) At this point, we proceed to the final stage where a
clean-up algorithm is run, which uses merely path augmentations. Using elementary concentration
inequalities we prove that a Hamiltonian cycle can be constructed in an additional O(

√
εn) = o(n)

steps.
In Section 2.3, we first describe FullyRandomized, as it is easier to state and analyze than

DegreeGreedy. Moreover, if we take N = 0, which corresponds to executing FullyRandomized

from the beginning, then we will be left with a path on all but εn vertices after α∗n steps where α∗ ≤
1.84887. This is exactly the upper bound obtained in [14]. Our third stage clean-up algorithm from
Section 2.4 allows us to complete the Hamiltonian cycle in another o(n) steps. Thus, Sections 2.3
and 2.4 provide a self-contained proof of an upper bound on CHAM of α∗ ≤ 1.84887 (see Theorem 2.6).
Afterwards, in Section 2.5 we formally state and analyze our first stage algorithm. This is the most
technical section of the paper, as DegreeGreedy makes decisions in a more intelligent manner than
FullyRandomized which necessitates more random variables in its analysis. By executing these
three stages in the aforementioned order, we attain the claimed upper bound of Theorem 1.1.

2.3. A Fully Randomized Algorithm. The algorithm takes a tuple (P,Y, E) as input where

• P is a path on a subset of vertices in [n];
• Y is a set of pairs of vertices in [n] \ V (P );
• E is a set of red edges such that no two edges in E are adjacent to the same vertex in P .

In order to simplify the analysis, we begin the semi-random graph process from round t = 0 with
the initial graph G0 induced by (P,Y, E). Note that if N = 0, then G0 is the empty graph on [n].
We encourage the reader to keep this case in mind on a first read through.

When considering Gt, a certain subset of its edges will be coloured red. This helps us define
certain vertices used by our algorithm for path augmentations. A vertex x ∈ V (Pt) is one-red
provided it is adjacent to precisely one red edge of Gt. Similarly, x ∈ V (Pt) is two-red, provided it
is adjacent to precisely two red edges of Gt. Throughout the execution of FullyRandomized, each
vertex in V (Pt) is incident with at most two red edges. We denote the sets of one-red vertices and
two-red vertices by L1

t and L2
t , respectively, and refer to Lt := L1

t ∪ L2
t as the red vertices of Gt.

By definition, L1
t and L2

t are disjoint. Initially, P0 = P , Y0 = Y, L2
0 = ∅, and L1

0 is set to be the set
of vertices in V (P ) that are incident with a red edge in E . It will also be convenient to maintain
a set of permissible vertices Qt ⊆ V (Pt) which specifies which uncoloured vertices on the path can
be turned red. In order to simplify our analysis, we specify the size of Qt and ensure that it only
contains vertices of path distance at least 3 from the red vertices on Pt. Formally:

(i) |Qt| = |V (Pt)| − 5|Lt|.
(ii) If Lt 6= ∅, then each x ∈ Qt satisfies dPt(x,Lt) ≥ 3.

When Lt = ∅, we simply take Qt = V (Pt). Otherwise, since |{x ∈ V (Pt) : dPt(x,Lt) ≤ 2}| ≤ 5|Lt|,
we can maintain these properties by initially taking {x ∈ V (Pt) : dPt(x,Lt) ≥ 3}, and then (if
needed) arbitrarily removing |{x ∈ V (Pt) : dPt(x,Lt) ≥ 3}| − (|V (Pt)| − 5|Lt|) vertices from it.

Upon the arrival of ut+1, there are five main cases our algorithm must handle. The first three
cases involve extending Pt or Yt, whereas the latter two describe what to do when it is not possible
to extend the path in the current round, how red edges, and how the one-red and two-red vertices
are created.
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(1) If ut+1 lands within Ut, then choose vt+1 u.a.r., and greedily extend Yt unless |Ut| = 1.
(2) If ut+1 lands in V (Yt), then greedily extend Pt.
(3) If ut+1 lands at path distance one from some x ∈ Lt, then augment Pt via an arbitrary red

edge of x.
(4) If ut+1 lands in Qt, then choose vt+1 u.a.r. amongst Ut ∪ V (Yt), and colour ut+1vt+1 red.

This case creates a one-red vertex.
(5) If ut+1 lands in L1

t , then choose vt+1 u.a.r. amongst Ut and colour ut+1vt+1 red. This case
converts a one-red vertex to a two-red vertex.

In all the remaining cases, we choose vt+1 arbitrarily, and interpret the algorithm as passing on the
round, meaning the edge ut+1vt+1 will not be used to construct a Hamiltonian cycle. In particular,
the algorithm passes on rounds in which ut+1 lands at path distance two from some x ∈ Lt. This
guarantees that no two red vertices are at distance two from each other and so when ut+1 lands
next to a red vertex, this neighbouring red vertex is uniquely identified. Let us say that a red vertex
is well-spaced, provided it is at distance at least 3 on the path from all other red vertices, and it
is not an endpoint of Pt. Observe that each well-spaced red vertex yields precisely two vertices on
Pt where a path augmentation involving ut+1 can occur. By construction, all but at most 2 of the
algorithm’s red vertices are well-spaced. The step t + 1 of the algorithm when ut+1 is drawn u.a.r.
from [n] is formally described by the FullyRandomized algorithm. Specifically, we describe how
the algorithm chooses vt+1, how it constructs Pt+1, and how it adjusts the colours of Gt+1, thus
updating L1

t and L2
t .

We define the random variables X(t) = |V (Pt)|, L1(t) = |L1
t |, L2(t) = |L2

t |, L(t) = |Lt| =
L1(t) + L2(t), and Y (t) = |V (Yt)| = 2|Yt|. Note that L(t) is an auxiliary random variable which
we define only for convenience, and Y (t) denotes the number of vertices incident to edges in Yt.

The input (P,Y, E) of FullyRandomized is the output of DegreeGreedy, and thus is randomized.
Our analysis of the execution of FullyRandomized relies on the fact that (P,Y, E) has a certain
distribution. To be specific, recall that L1

0 is the set of vertices on P incident with an edge in E .
Then, conditional on P , |Y|, and L1

0, the following properties are satisfied by (P,Y, E):

(O1) Y is uniform over all possible |Y| pairs of vertices in [n] \ V (P );
(O2) E is uniform over all possible set of edges joining L1

0 and [n] \ V (P ) such that every vertex
in L1

0 is incident with exactly one edge in E .

We shall prove that these properties hold in Subsection 2.7. Using these properties, together with
the specification of FullyRandomized, we first show that our random variables cannot change
drastically in one round. We use ∆ to denote the one step changes in our random variables (i.e.,
∆X(t) := X(t + 1) −X(t)).

Lemma 2.1 (Boundedness Hypothesis – FullyRandomized). With probability 1 −O(n−1),

max{|∆X(t)|, |∆L1(t)|, |∆L2(t)|, |∆Y (t)|} = O(log n)

for all 0 ≤ t ≤ 3n with n−X(t) ≥ n/ log n.

Proof. Note that, by design, the path can only increase its length but it cannot absorb more than
two vertices in each round. Hence, the desired property clearly holds for the random variable
X(t). The same holds for Y (t). To estimate the maximum change for the random variables L1(t)
and L2(t), we need to upper bound the number of red edges adjacent to any particular vertex
v ∈ Ut ∪ V (Yt). Observe that due to (O2) and how the red edges are randomly selected, if we
condition on Ut ∪ V (Yt), then this is distributed as Bin(t, |Ut ∪ V (Yt)|). Since t ≤ 3n, and we have
assumed that there are at least n/ log n vertices in Ut∪V (Yt), the number of red edges adjacent to v
is stochastically upper bounded by the binomial random variable Bin(3n, log n/n) with expectation
3 log n. It follows immediately from Chernoff’s bound that with probability 1−O(n−3), the number
of red edges adjacent to v is O(log n), and so the desired bound holds by union bounding over all
3n2 vertices and steps. �
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Algorithm FullyRandomized. Step t + 1

1: if ut+1 ∈ Ut and |Ut| ≥ 2 then ⊲ greedily extend Yt

2: Let vt+1 be a uniformly random vertex in Ut \ {ut+1}.
3: Set Pt+1 = Pt and Yt+1 = Yt ∪ {ut+1vt+1}.
4: else if ut+1y ∈ Yt for some y then ⊲ greedily extend Pt

5: Let vt+1 be an arbitrarily chosen endpoint of Pt.
6: Set V (Pt+1) = V (Pt) ∪ {ut+1, y}, E(Pt+1) = E(Pt) ∪ {ut+1vt+1, ut+1y}.
7: Set Yt+1 = Yt \ {ut+1y}.
8: Uncolour all of the edges adjacent to ut+1 or y.
9: else if dPt(ut+1,Lt) = 1 then ⊲ path augment via red vertices

10: Let x ∈ Lt be the (unique) red vertex adjacent to ut+1

11: Denote xy ∈ E(Gt) an arbitrary red edge of x.
12: if y ∈ Ut then

13: Set vt+1 = y.
14: Set V (Pt+1) = V (Pt) ∪ {vt+1} and E(Pt+1) = (E(Pt) ∪ {xvt+1, ut+1vt+1}) \ {ut+1x}.
15: Set Yt+1 = Yt

16: Uncolour all of the edges adjacent to r.
17: else if yy′ ∈ Yt for some y′ then
18: Set vt+1 = y′

19: Set V (Pt+1) = V (Pt) ∪ {y, vt+1}, E(Pt+1) = (E(Pt) ∪ {xy, yvt+1, ut+1vt+1}) \ {ut+1x}.
20: Set Yt+1 = Yt \ {yvt+1}
21: Uncolour all of the edges adjacent to y or vt+1.
22: end if

23: else

24: if ut+1 ∈ Qt ∪ L1
t then ⊲ construct red vertices or pass

25: Choose vt+1 u.a.r. from Ut ∪ V (Yt).
26: Colour ut+1vt+1 red. ⊲ construct a one-red or two-red vertex
27: else ⊲ pass on ut+1vt+1

28: Choose vt+1 arbitrarily from [n].
29: end if

30: Set Pt+1 = Pt; Yt+1 = Yt.
31: end if

32: Update Qt+1, if needed, such that |Qt+1| = |V (Pt+1)| − 5|Lt+1|.

Let us denote Ht = (X(i), L1(i), L2(i), Y (i))0≤i≤t. Note that Ht does not encompass the entire
history of the random process after t rounds (i.e., G0, . . . , Gt, the first t + 1 graphs appearing in
the sequence generated by the process. The distribution of (P,Y, E) together with the technique of
deferred information exposure permit a tractable analysis of the random positioning of vt when ut
is red. In particular, as we only expose Y (t) instead of Yt, Yt has the same distribution (conditional
on Ht) as first exposing the set of vertices in [n]\V (Pt), then uniformly selecting a subset of vertices
in [n]\V (Pt) of cardinality Y (t), and then finally taking a uniformly random perfect matching over
the Y (t) vertices (i.e. pair the Y (t) vertices into Y (t)/2 disjoint edges). Similarly, conditional on
L1(t) and L2(t), we may first expose L1

t and L2
t , and then choose their neighbours joined by a red

edge uniformly from [n] \ V (Pt). Moreover, this process (of choosing the ends of red edges lying in
[n] \ V (Pt)) is independent of the process of choosing and pairing vertices for Yt. We observe the
following expected difference equations.
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Lemma 2.2 (Trend Hypothesis – FullyRandomized). For each t ≥ 0, if n−X(t) ≥ n/ log n, then
by setting Γ(t) = 1 + Y (t)/(n −X(t)) and A(t) = 2Y (t)/(n −X(t)),

E[∆X(t) | Ht] =
2Y (t)

n
+

2L(t)

n
· Γ(t) + O(log n/n) (2)

E[∆Y (t) | Ht] = −2Y (t)

n
+

2(n −X(t) − Y (t))

n
− 2L(t)

n
·A(t) + O(log n/n) (3)

E[∆L1(t) | Ht] =
X(t) − 5L(t)

n
− 2L1(t)

n
+

2L1(t)

n

(

2L2(t)

n−X(t)
− L1(t)

n−X(t)

)

· Γ(t)

+
2L2(t)

n
+

2L2(t)

n

(

2L2(t)

n−X(t)
− L1(t)

n−X(t)

)

· Γ(t) − L1(t)

n

+
2Y (t)

n
·
(

2L2(t)

n−X(t)
− L1(t)

n−X(t)

)

+ O(log n/n) (4)

E[∆L2(t) | Ht] =
L1(t)

n
− 2L2(t)

n
· A(t) − 2L1(t)

n
· 2L2(t)

n−X(t)
·B(t)

−2L2(t)

n
− 2L2(t)

n
· 2L2(t)

n−X(t)
· Γ(t) + O(log n/n). (5)

Proof. As discussed earlier, the FullyRandomized algorithm ensures that at time t there are at
most 2 red vertices which are not well-spaced. Thus, since our expected differences each allow for a
O(log n/n) term, without loss of generality, we can assume that all our red vertices are well-spaced.
Note also that all our explanations below assume that we have conditioned on Ht.

When path augmentation occurs via a red edge incident to a vertex x on Pt, we first expose r
(the other end of the red edge) which is distributed uniformly over all vertices in [n] \ V (Pt), and
then we expose whether r is in V (Yt). In the case that r is in V (Yt) we expose y which is paired
to r in Yt.

The first expected difference is easy to see. Observe that there are three disjoint cases where
∆X(t) is nonzero. Case 1: ut+1 lands on a vertex in V (Yt). In this case ∆X(t) is 2, and this event
occurs with probability Y (t)/n. Case 2: ut+1 is next to a red vertex x (i.e. a vertex in Lt) on Pt,
and path augmentation is performed via a red edge xr where r ∈ Ut. In this case, ∆X(t) = 1 and
the probability of this event is (2L(t)/n) · (1 − Y (t)/(n −X(t))), where 2L(t)/n is the probability
that dPt(ut+1,Lt) = 1, and 1 − Y (t)/(n − X(t)) is the probability that r ∈ Ut conditional on
r ∈ [n] \V (Pt). Case 3: same as case 2 but r ∈ V (Yt). In this case, ∆X(t) = 2 and the probability
of this event is (2L(t)/n) · (Y (t)/(n −X(t))). Combining all three cases together we obtain (2).

The remaining equations are obtained in a similar manner. In what follows, we explain the event
A for which each term in the equations account for as E[∆Z(t) · 1A] where Z ∈ {Y,L1, L2}.

For the second equation, −2Y (t)/n is the contribution from the case that ut+1 lands on V (Yt);
(−2L(t)/n) ·A(t) corresponds to the event that ut+1 lands on a neighbour of some x ∈ Lt on Pt, and
the path augmentation is performed via a red edge xr where r ∈ V (Yt). Finally, 2(n−X(t)−Y (t))/n
corresponds to the event that ut+1 lands on a vertex in Ut.

For the third equation, the term (X(t) − 5L(t))/n is the contribution from the case that ut+1

lands on Qt. In the case that ut+1 lands on a vertex neighbouring some x ∈ L1
t on Pt (which

occurs with probability 2L1(t)/n) the contribution to ∆L1(t) can come from two sources: (a) x is
removed from L1

t after the path augmentation and thus it contributes −1 to ∆L1(t); (b) one or
two vertices will be added to Pt, which results in uncolouring of all red edges incident to them, and
which consequently contributes to ∆L1(t). Note that 2L2(t)/(n − X(t)) is the expected number
of two-red vertices that become one-red when a vertex r ∈ Ut ∪ V (Yt) is moved to Pt. Similarly,
L1(t)/(n − X(t)) is the expected number of one-red vertices that get removed from L1

t due to
moving of a certain vertex r ∈ Ut ∪ V (Yt) to Pt. Finally, B(t) is the expected number of vertices
in Ut ∪ V (Yt) that will be added to Pt.
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The next two terms (in the second line of third equation) correspond to the symmetric case:
ut+1 lands on a vertex neighbouring some x ∈ L2

t on Pt (which occurs with probability 2L2(t)/n)
with the same two sources that contribute to ∆L1(t). The term −L1(t)/n corresponds to the case
where ut+1 lands on a vertex x ∈ L1

t which results in moving x from L1
t to L2

t+1.
Finally, the last term (2Y (t)/n)(2L2(t)−Lt(t))/(n−X(t)) is the contribution from moving two

vertices from Ut ∪ V (Yt) to Pt in the case that ut+1 lands on a vertex in V (Yt).
For the last equation, L1(t)/n accounts for ut+1 landing on a vertex in L1

t , and a one-red vertex
becomes two-red. The term −2L2(t)A(t)/n accounts for the case that ut+1 lands on a vertex in
V (Yt). In this case (which occurs with probability Y (t)/2) 2 vertices are moved from V (Yt) to Pt,
each of which will resulting in uncolouring 2L2(t)/(n −X(t)) red edges incident to vertices in L2

t

in expectation.
The third and the fifth terms together in the equation accounts for the case that ut+1 lands on a

neighbour of Lt, where one or two vertices in Ut∪V (Yt) is moved to Pt after the path augmentation,
each resulting uncolouring 2L2(t)/(n −X(t)) red edges incident to L2

t in expectation. The fourth
term accounts for the case that ut+1 lands on a vertex neighbouring a vertex x ∈ L2

t , resulting the
removal of x from L2

t after the path augmentation. �

In order to analyze FullyRandomized, we shall employ the differential equation method [28].
This method is commonly used in probabilistic combinatorics to analyze random processes that
evolve step by step. The step changes must be small in relation to the entirety of the discrete
structure. For instance, in our application, this refers to adding one edge at a time to the graph on
[n] vertices. The method allows us to derive tight bounds on the associated random variables which
hold a.a.s. at every step of the random process. We refer the reader to [5] for a gentle introduction
to the methodology.

Recall that FullyRandomized takes input (P,Y, E). Let X(0), Y (0), L1(0) denote the number of
vertices on P , the number of vertices incident to edges in Y, and the number of vertices incident
with E . We prove in Section 2.7 that there exist some constants x̂, ŷ, ℓ̂1 such that |X(0)/n −
x̂|, |Y (0)/n − ŷ|, |L1(0)/n− ℓ̂1| ≤ λ for some λ = o(1). Initially, there are no two-red vertices, that
is, we will always set L2(0) = 0. Let us now fix a sufficiently small constant ε > 0, and define the
bounded domain

Dε := {(s, x, y, ℓ1, ℓ2) : −1 < s < 3,−1 < x < 1 − ε, |ℓ1| < 2, |ℓ2| < 2}.
Consider the system of differential equations in variable s with functions x = x(s), y = y(s), ℓ1 =
ℓ1(s), and ℓ2 = ℓ2(s):

x′ = 2y + 2(ℓ1 + ℓ2)λ (6)

y′ = −2y + 2(1 − x− y) − 2(ℓ1 + ℓ2)a (7)

ℓ′1 = x− 5(ℓ1 + ℓ2) − 2ℓ1 + (2ℓ1λ + 2ℓ2λ + 2y) · 2ℓ2 − ℓ1

1 − x
+ 2ℓ2 − ℓ1 (8)

ℓ′2 = ℓ1 − 2ℓ2a− (2ℓ1 + 2ℓ2)λ · 2ℓ2

1 − x
− 2ℓ2, (9)

where λ(s) = 1 + y(s)/(1 − x(s)) and a(s) = 2y(s)/(1 − x(s)). The right-hand side of each of the
above equations is Lipchitz on the domain Dε. Define

TDε = min{t ≥ 0 : (t/n,X(t)/n, Y (t)/n,L1(t)/n,L2(t)/n) /∈ Dε}.
Now, the ‘Initial Condition’ of Theorem A.1 is satisfied with values (0, x̂, ŷ, ℓ̂1, 0) and some λ =
o(1). Moreover, the ‘Trend Hypothesis’ and ‘Boundedness Hypothesis’ are satisfied with some δ =
O(log n/n), β = O(log n) (with failure probability γ = o(1) throughout the process by Lemmas 2.1)
by Lemma 2.2. Thus, for every δ > 0, X(t) = nx(t/n) + o(n), Y (t) = ny(t/n) + o(n), L1(t) =
nℓ1(t/n) + o(n) and L2(t) = nℓ2(t/n) + o(n) uniformly for all t0 ≤ t ≤ (σ(ε) − δ)n, where x, y, ℓ1
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and ℓ2 are the unique solution to (6)–(9) with initial conditions x(0) = x̂, y(0) = ŷ, ℓ1(0) = ℓ̂1, and
ℓ2(0) = 0, and σ(ε) is the supremum of s to which the solution can be extended before reaching
the boundary of Dε.

Lemma 2.3 (Concentration of FullyRandomized’s Random Variables). For every δ > 0, a.a.s.
for all 0 ≤ t ≤ (σ(ε) − δ)n,

max
{

|X(t) − x(t/n)n|, |Y (t) − y(t/n)n|, |L1(t) − ℓ1(t/n)n|, |L2(t) − ℓ2(t/n)n|
}

= o(n).

As Dε ⊆ Dε′ for every ε > ε′, σ(ε) is monotonically nondecreasing as ε → 0. Thus,

α∗ := lim
ε→0+

σ(ε) (10)

exists. It is obvious that |L1(t)/n|, |L2(t)/n|, and |Y (t)/n| are all bounded by 1 for all t and thus,
when t/n approaches α∗, either X(t)/n approaches 1 or t/n approaches 3. Formally, we have the
following proposition.

Proposition 2.4. For every ε > 0, there exists δ > 0 such that a.a.s. one of the following holds.

• X(t) > (1 − ε)n for all t ≥ (α∗ − δ)n;
• α∗ = 3.

The ordinary differential equations (6)–(9) do not have an analytical solution. In both cases,
N = 0 and N = 100, numerical solutions show that α∗ < 1.85. (For N = 0, α∗ ≈ 1.84887.) Thus,
by the end of the execution of FullyRandomized, there are εn unsaturated vertices (i.e. vertices
not in Pt) remaining, for some ε = o(1).

2.4. A Clean-up Algorithm. Suppose that we are presented a path P on (1−ε)n vertices of [n],
where 0 < ε = ε(n) < 1/1000. The assumption on ε is a mild but convenient assumption. We will
apply the argument for ε = o(1). In this section, we provide an algorithm for the semi-random graph
process which absorbs the remaining εn vertices into P to form a Hamiltonian path, after which
a Hamiltonian cycle can be constructed. The whole procedure takes O(

√
εn + n3/4 log2 n) = o(n)

further steps in the semi-random graph process. Moreover, the algorithm is self-contained in that
it only uses the edges of P in its execution.

Lemma 2.5 (Clean-up Algorithm). Let 0 < ε = ε(n) < 1/1000, and suppose that P is a path on
(1 − ε)n vertices of [n]. Then, given P initially, there exists a strategy for the semi-random graph

process which builds a Hamiltonian cycle from P in O(
√
εn + n3/4 log2 n) steps a.a.s.

Remark 2. The constant hidden in the O(·) notation does not depend on ε. The strategy used in
the clean-up algorithm is similar to that in FullyRandomized but the analysis is done in a much
less accurate way, as we only need to prove an o(n) bound on the number of steps required to
absorb εn vertices, assuming ε = ε(n) → 0 as n → ∞.

Proof of Lemma 2.5. Let j0 = εn. For each k ≥ 1, let jk = (1/2)jk−1 if jk−1 > n1/4, and let
jk = jk−1 − 1 otherwise. Clearly, jk is a decreasing function of k. Let τ1 be the smallest natural
number k such that jk ≤ n1/4. Let τ be the natural number k such that jk = 0. Obviously,
τ1 = O(log n) and τ = O(n1/4).

We use a cleaning-up algorithm, which runs in iterations. The k-th iteration repeatedly absorbs
jk−1 − jk vertices into P , leaving jk unsaturated vertices (vertices that have not been added to P )
in the end. The k-th iteration of the cleaning-up algorithm works as follows.

(i) (Initialising): Uncolour all vertices in the graph;

(ii) (Building reservoir): Let mk :=
√
ε(1/2)k/2n for k ≤ τ1 and mk :=

√
n if τ1 < k ≤ τ . Add

mk semi-random edges as follows. If ut lands on an unsaturated vertex, a red vertex, or a
neighbour of a red vertex in P , then let vt be chosen arbitrarily. This edge utvt will not be
used in our construction. Otherwise, colour ut red and choose an arbitrary vt among those
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unsaturated vertices with the minimum number of red neighbours. Colour utvt red. Note
that each red vertex is adjacent to exactly one red edge;

(iii) (Absorbing via path augmentations): Add semi-random edges as follows. Suppose that ut
lands on P and at least one neighbour of ut on P is red. (Otherwise, vt is chosen arbitrarily,
and this edge will not be used in our construction.) Let x be such red vertex (if ut has two
neighbours on P that are red, then select one of them arbitrarily). Let y by the neighbour
of x where xy is red, and let vt = y. Extend P by deleting the edge xut and adding the
edges xy and yut. Uncolour all red edges incident to y and all red neighbours of y (which,
of course, includes vertex x).

Notice that, in each iteration, mk ≥ n1/2. Indeed, this is obviously true for τ1 < k ≤ τ . On the
other hand, if k ≤ τ1, then jk = εn(1/2)k and so mk =

√
njk ≥ √

n (in fact, mk = Ω(n5/8)).
Let Tk denote the length of the k-th iteration of the cleaning-up algorithm. It remains to prove

that a.a.s.
∑

k≤τ Tk = O(
√
εn+n3/4 log2 n). Let Rk be the number of red vertices obtained after step

(ii) of iteration k. Obviously, Rk ≤ mk. On the other hand, each ut is coloured red with probability
at least 1− jk−1/n− 3mk/n ≥ 1− ε− 3

√
ε ≥ 0.95. Hence, Rk can be stochastically lower bounded

by the binomial random variable Bin(mk, 0.95). By the Chernoff bound, with probability at least
1 − n−1, Rk ≥ 0.9mk, as mk ≥ n1/2.

First, we consider iterations k ≤ τ1. Let R̃k be the number of red vertices at the end of step (iii).
Note that the minimum degree property of step (ii) ensures each unsaturated vertex is adjacent to
at most Rk/jk−1 + 1 ≤ mk/jk−1 + 1 red vertices. Moreover, exactly jk−1 − jk = (1/2)jk−1 vertices
are absorbed in step (iii). As a result,

R̃k ≥ Rk −
(

mk

jk−1
+ 1

)

· jk−1

2
≥ 0.9mk −

mk

2
− jk−1

2
≥ 0.3mk,

as jk−1 = 2jk ≤ 2
√
εmk ≤ 0.1mk. It follows that throughout step (iii), there are at least 0.3mk red

vertices. Thus, for each semi-random edge added to the graph during step (iii), the probability that

a path extension can be performed is at least 0.3mk/n = 0.3
√
ε(1/2)k/2. Again, by the Chernoff

bound, with probability at least 1 − n−1, the number of semi-random edges added in step (iii) is
at most

2(jk−1 − jk) · 2k/2

0.3
√
ε
≤ 7

√
ε(1/2)k/2n.

Combining the number of semi-random edges added in step (ii), it follows that with probability at

least 1 − n−1, Tk ≤ mk + 7
√
ε(1/2)k/2n = 8

√
ε(1/2)k/2n.

Next, consider iterations τ1 < k ≤ τ . In each iteration, exactly one unsaturated vertex gets
absorbed. The number of semi-random edges added in step (ii) is mk = n1/2. We have argued
above that with probability at least 1−n−1, Rk ≥ 0.9mk. Thus, for each semi-random edge added
to the graph, the probability that a path extension can be performed is at least 0.9mk/n = 0.9n−1/2.
By the Chernoff bound, with probability at least 1−n−1, the number of semi-random edges added
in step (iii) is at most n1/2 log2 n. Thus, with probability at least 1−n−1, Tk ≤ n1/2 +n1/2 log2 n ≤
2n1/2 log2 n.

Taking the union bound over all k ≤ τ , since τ = O(n1/4), it follows that a.a.s.
∑

k≤τ

Tk ≤
∑

k≤τ1

8
√
ε(1/2)k/2n +

∑

τ1<k≤τ

2n1/2 log2 n = O(
√
εn + n3/4 log2 n).

We have shown that a.a.s. by adding O(
√
εn+n3/4 log2 n) additional semi-random edges we can

construct a Hamiltonian path P . To complete the job and turn it into a Hamiltonian cycle, let
u and v denote the left and, respectively, the right endpoint of P . We proceed in two stages. In
the first stage, add n1/2 log n semi-random edges utvt where vt is always u, discarding any multiple
edges that could possibly be created. For each such semi-random edge utu, colour the left neighbour
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of ut on P blue. In the second stage, add n1/2 log n semi-random edges utvt where vt is always v.
Suppose that some ut = x is blue in the second stage. Then, a Hamiltonian cycle is obtained by
deleting xy from P and adding the edges xv and uy, where y is the right neighbour of x on P .
By Chernoff bound, a.a.s. a semi-random edge added during the second stage hits a blue vertex,
completing the proof. �

By setting N = 0 we immediately get an algorithm which a.a.s. constructs a Hamiltonian cycle
in α̂n steps, where α̂ ≤ 1.84887. To obtain the better bound in Theorem 1.1, we set N = 100, and
the execution of DegreeGreedy will be analysed in the next subsection.

Theorem 2.6. CHAM ≤ α̂ ≤ 1.84887, where α̂ is defined in (10) with initial conditions for (6)–(9)
set by x(0) = y(0) = ℓ1(0) = ℓ2(0) = 0.

Proof. This follows by Proposition 2.4, the numerical value of α∗, and Lemma 2.5. �

2.5. A Degree-Greedy Algorithm. Let us suppose that after t ≥ 0 steps, we have constructed
the graph Gt which contains the path Pt and a collection of vertex disjoint edges Yt where V (Yt) ⊆
[n]\V (Pt). We refer to V (Pt) (respectively, [n]\V (Pt)) as the saturated (respectively, unsaturated)
vertices of [n].

As before, our algorithm uses path augmentations, and we colour the edges and vertices of Gt to
help keep track of when these augmentations can be made. We now use two colours, namely red and
blue, to distinguish between edges which are added randomly (red) and greedily (blue). Our blue
edges will be chosen so as to minimize the number of blue edges destroyed by path augmentations
in future rounds.

We say that x ∈ V (Pt) is blue, provided it is adjacent to a single blue edge of Gt, and no red
edge. Similarly, x ∈ V (Pt) is red, provided it is adjacent to a single red edge of Gt, and no blue
edge. Finally, we say that x ∈ V (Pt) is magenta (mixed), provided it is adjacent to a single red
edge, and a single blue red. We denote the blue vertices, red vertices, and magenta (mixed) vertices
by Bt,Rt and Mt, respectively, and define Lt := Bt ∪ Rt ∪ Mt to be the coloured vertices. By
definition, Bt,Rt and Mt are disjoint. It will be convenient to once again define Ut as the vertices
not in Pt or any edge of Yt. Finally, we maintain a set of permissible vertices Qt which indicate
which vertices of the path are allowed to be coloured blue. Specifically, using the same reasoning
as before, we ensure the following:

(i) |Qt| = |V (Pt)| − 5|Lt|.
(ii) If Lt 6= ∅, then each x ∈ Qt satisfies dPt(x,Lt) ≥ 3.

Upon the arrival of ut+1, there are six main cases our algorithm must handle. The first three
cases involve extending Pt or Yt, whereas the latter three describe how to add edges so that the
path can be extended in later rounds.

(1) If ut+1 lands in Ut and |Ut| ≥ 2, then choose vt+1 u.a.r. amongst Ut \{ut+1} and extend Yt.
(2) If ut+1 lands in V (Yt), then greedily extend Pt.
(3) If ut+1 lands at path distance one from x ∈ Lt, then augment Pt via a coloured edge of x,

where a blue edge is taken over a red edge if possible.
(4) If ut+1 lands in Qt, then choose vt+1 u.a.r. amongst those vertices of Ut with minimum blue

degree. The edge ut+1vt+1 is then coloured blue, and a single blue vertex is created.
(5) If ut+1 lands in Rt, then choose vt+1 u.a.r. amongst those vertices of Ut with minimum blue

degree. The edge ut+1vt+1 is then coloured blue, and a single red vertex is converted to a
magenta (mixed) vertex.

(6) If ut+1 lands in Bt, then choose vt+1 u.a.r. amongst Ut and colour ut+1vt+1 red. This case
converts a blue vertex to a magenta vertex.

In all the remaining cases, we choose vt+1 arbitrarily, and interpret the algorithm as passing on the
round. As in FullyRandomized, we ensure that all of the algorithm’s coloured vertices are at path
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distance at least 3 from each other, and we define a coloured vertex to be well-spaced in the same
way. Step t + 1 of the algorithm when ut+1 is drawn u.a.r. from [n] is formally described by the
DegreeGreedy algorithm. We describe how the algorithm chooses vt+1, how it constructs Pt+1 and
Yt+1, and how it adjusts the colours of Gt+1, thus updating Bt,Mt and Rt. Note that red vertices

Algorithm DegreeGreedy. Step t + 1

1: if ut+1 ∈ Ut and |Ut| ≥ 2 then ⊲ greedily extend Yt

2: Choose vt+1 u.a.r. from Ut \ V (Yt) ∪ {ut+1}.
3: Set Pt+1 = Pt and Yt+1 = Yt ∪ {ut+1vt+1}.
4: else if ut+1y ∈ Yt for some y then ⊲ greedily extend the path
5: Let vt+1 be an arbitrarily chosen endpoint of Pt.
6: Update Pt+1 from Pt by adding edges ut+1vt+1 and ut+1y.
7: Set Yt+1 = Yt \ {ut+1y}.
8: Uncolour all of the edges adjacent to ut+1 or y.
9: else if d(ut+1,Lt) = 1 then ⊲ path augment via coloured vertices

10: Let x ∈ Lt be the (unique) coloured vertex adjacent to ut+1

11: if x is red then

12: Denote xy ∈ E(Gt) the red edge of x.
13: else ⊲ x is blue or magenta
14: Denote xy ∈ E(Gt) the blue edge of x.
15: end if

16: if y ∈ Ut then

17: Set vt+1 = y
18: Update Pt+1 from Pt by adding edges ut+1vt+1, vt+1x and removing edge ut+1x.
19: Set Yt+1 = Yt.
20: else if yy′ ∈ Yt then

21: Set vt+1 = y′

22: Update Pt+1 from Pt by adding edges ut+1vt+1, vt+1y, yx and removing edge ut+1x.
23: Set Yt+1 = Yt \ {yy′}
24: end if

25: Uncolour all of the edges adjacent to y (as well as y′ if applicable).
26: else ⊲ construct coloured vertices or pass
27: if ut+1 ∈ Qt ∪Rt then

28: Choose vt+1 u.a.r. from the vertices of Ut of minimum blue degree.
29: Colour ut+1vt+1 blue. ⊲ create a blue or magenta vertex
30: else if ut+1 ∈ Bt then

31: Choose vt+1 u.a.r. from Ut.
32: Colour the edge ut+1vt+1 red. ⊲ create a magenta vertex
33: else ⊲ pass on using edge ut+1vt+1

34: Choose vt+1 arbitrarily from [n].
35: end if

36: Set Pt+1 = Pt,Yt+1 = Yt.
37: end if

38: Update Qt+1 if needed, such that |Qt+1| = |V (Pt+1)| − 5|Lt+1|. ⊲ update permissible vertices

are only created when the blue edges of magenta vertices are uncoloured as a side effect of path
extensions and augmentations (see lines (8) and (25) of DegreeGreedy).

For each t ≥ 0, define the random variables X(t) := |V (Pt)|, B(t) := |Bt|, R(t) := |Rt|, M(t) :=
|Mt|, L(t) := |Lt| = B(t) + R(t) + M(t), and Y (t) := |V (Yt)|. For each q ≥ 0 define Dq(t) to be
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the number of unsaturated vertices adjacent to precisely q blue edges. We define the stopping time
τq to be the smallest t ≥ 0 such that Dj(t) = 0 for all j < q, and Dq(t) > 0. It is obvious that τq
is well-defined and is non-decreasing in q. By definition, τ0 = 0. Let us refer to phase q as those
t such that τq−1 ≤ t < τq. Observe that during phase q, each unsaturated vertex (i.e., vertex of
[n] \ V (Pt)) has blue degree q − 1 or q.

2.6. Analyzing phase q. Suppose that τq−1 ≤ t < τq. It will be convenient to denote D(t) :=
Dq−1(t). Given k1, k2 ≥ 0, we say that y ∈ [n] \ V (Pt) is of type (k1, k2), provided it is adjacent to
k1 blue edges within Bt and k2 blue edges within Mt. Similarly, x ∈ Bt ∪Mt is of type (k1, k2),
provided its (unique) blue edge connects to a vertex of type (k1, k2). We denote the number of
unsaturated vertices of type (k1, k2) by Ck1,k2(t), the blue vertices of type (k1, k2) by Bk1,k2(t), and
the magenta (mixed) vertices of type (k1, k2) by Mk1,k2(t). Observe that Bk1,k2(t) = k1 · Ck1,k2(t)
and Mk1,k2(t) = k2 · Ck1,k2(t). Moreover, Dj(t) =

∑

k1,k2:
k1+k2=j

Ck1,k2(t).

In Subsection 2.8, we inductively define the functions x, r, y and ck1,k2 for k1 + k2 ≥ 0, as well as
a constant σq ≥ 0, such that the following lemma holds:

Lemma 2.7. A.a.s. τq ∼ σqn for every 0 ≤ q ≤ N .2 Moreover, at step τq, a.a.s.

X(τq) ∼ x(σq)n, R(τq) ∼ r(σq)n, Y (τq) ∼ y(σq)n,

Ck1,k2(τq) ∼ ck1,k2(σq)n for all (k1, k2) where k1 + k2 = q.

Although the method in the proof for Lemma 2.7 is similar to that of Lemmas 2.1, 2.2, 2.3 and
Proposition 2.4, the analysis is much more intricate and involved. We postpone the proof until
afterwards, and first complete the proof of Theorem 1.1.

2.7. Proving Theorem 1.1 assuming Lemma 2.7.

Proof of Theorem 1.1. Set N = 100. By Lemma 2.7, the execution of DegreeGreedy ends at some
step t0 ∼ σNn. Moreover, X(t0) ∼ x(σN )n, Y (t0) ∼ y(σN )n, R(t0) ∼ r(σN )n and M(t0) ∼
m(σN )n. Numerical computations show that σN ≈ 1.80249. Let P be the path constructed after
the first t0 rounds, Y be the edges of Yt0 , and E be the red edges adjacent to the vertices of
Mt0 ∪ Rt0 . By the definition of DegreeGreedy, in particular by the way that Yt is extended, and
the way that the red edges are created, Y has the uniform distribution over all possible |Y| pairs
over vertices that are not on the path P ; and for each red edge, its end that is not on the path
P is also uniformly distributed. Thus, (P,Y, E) has the distribution required for the analysis of
FullyRandomized. Let

x̂ := x(σN ) ≈ 0.99991

ŷ := y(σN ) ≈ 0.0000029724

ℓ̂1 := m(σN ) + r(σN ) ≈ 0.00019429.

Then, x̂, ŷ, and ℓ̂1 satisfy |P | ∼ x̂n, |Y| ∼ ŷn and |E| ∼ ℓ̂1n. (The final equation holds since each
vertex of Mt0 ∪Rt0 is adjacent to one red edge.)

We next execute FullyRandomized with initial input (P,Y, E). Let α∗ be as defined in (10)

where the initial conditions to the differential equations (6)–(9) are set by x(0) = x̂, ℓ1(0) = ℓ̂1

and ℓ2(0) = 0. Numerical computations show that α∗ ≈ 0.014468. By Proposition 2.4 and the fact
that α∗ < 3, the execution of the first two stages (DegreeGreedy and FullyRandomized) finishes
at some step (σN + α∗ + o(1))n ≤ 1.81696n, and the number of unsaturated vertices remaining is
o(n). Finally, the clean-up algorithm constructs a Hamiltonian cycle with an additional o(n) steps
by Lemma 2.5. The theorem follows. �

2For functions f = f(n) and g = g(n), f ∼ g is shorthand for f = (1 + o(1))g.
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2.8. Proving Lemma 2.7. We once again must first argue that our random variables cannot
change drastically in one round during phase q.

Lemma 2.8 (Lipschitz Condition – DegreeGreedy). If |∆C(t)| := max k1,k2∈N∪{0}:
k1+k2∈{q−1,q}

|∆Ck1,k2(t)|,

then with probability 1 −O(n−1),

max{|∆X(t)|, |∆C(t)|, |∆R(t)|, |∆Y (t)|} = O(log n)

for all τq−1 ≤ t < τq with n−X(t) = Ω(n).

Proof. Since q ≤ N is a constant which does not depend on n, we can apply the same argument to
bound the red edges of each ∆Ck1,k2(t) as in Lemma 2.1, and then union bound over all k1, k2 ≥ 0
such that k1 + k2 ∈ {q − 1, q}. �

Let Ht denote the history of the above random variables during the first t rounds. We now state
the conditional expected differences of our random variables, where we assume that τq−1 ≤ t < τq
is such that n − X(t) = Ω(n). It will be convenient to define auxiliary random variables A(t) :=
2Y (t)/(1 −X(t)) and Γ(t) := 1 + Y (t)/(1 −X(t)). Then,

E[∆X(t) | Ht] =
2Y (t)

n
+

2L(t)

n
Γ(t) + O(1/n) (11)

and

E[∆Y (t) | Ht] = −2Y (t)

n
+ 2

(

1 − X(t) − Y (t)

n

)

− 2L(t)

n
A(t). (12)

We omit the proofs of (11) and (12), as the derivation is the same as the analogous equations of
Lemma 2.2. For the remaining random variables, we state the expected differences and derive them
afterwards.

First, consider ∆R(t):

E[∆R(t) | Ht] =
Y (t)

n

(

2M(t)

n−X(t)
− 2R(t)

n−X(t)

)

− 2(B(t) + M(t))

n

R(t)Γ(t)

n−X(t)

+
∑

j,h:
j+h∈{q−1,q}

2Bj,h(t)

n

(

h +
Y (t)

n−X(t)

M(t)

n−X(t)

)

+
∑

j,h:
j+h∈{q−1,q}

2Mj,h(t)

n

(

h +
Y (t)

n−X(t)

M(t)

n−X(t)

)

−2R(t)

n

(

1 +
R(t)Γ(t)

n−X(t)

)

+
2R(t)

n

M(t)Γ(t)

n−X(t)
− R(t)

n
+ O(1/n). (13)

If k1 + k2 = q − 1, then ∆Ck1,k2(t) satisfies:

E[∆Ck1,k2(t) | Ht] =
Y (t)

n

(

2Mk1−1,k2+1(t)

n−X(t)
· 1k1>0 −

2Ck1,k2(t)

n−X(t)
− 2Mk1,k2(t)

n−X(t)

)

+
2(B(t) + M(t))

n

(

Mk1−1,k2+1(t)

n−X(t)
· 1k1>0 −

Mk1,k2(t)

n−X(t)

)

Γ(t)

−2(B(t) + M(t))

n

A(t)

2

Ck1,k2(t)

n−X(t)
− 2Bk1,k2(t)

n
− 2Mk1,k2(t)

n

+
2R(t)

n

(

Mk1−1,k2+1(t)

n−X(t)
· 1k1>0 −

Mk1,k2(t)

n−X(t)
− Ck1,k2(t)

n−X(t)

)

Γ(t)

−(X(t) − 5L(t))

n

Ck1,k2(t)

D(t)
− R(t)

n

Ck1,k2(t)

D(t)
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+
Bk1+1,k2−1(t)

n
· 1k2>0 −

Bk1,k2(t)

n
+ O(1/n). (14)

When k1 + k2 = q, two terms from the above expression are modified slightly, and have their signs
reversed:

E[∆Ck1,k2(t) | Ht] =
Y (t)

n

(

2Mk1−1,k2+1(t)

n−X(t)
· 1k1>0 −

2Ck1,k2(t)

n−X(t)
− 2Mk1,k2(t)

n−X(t)

)

+
2(B(t) + M(t))

n

(

Mk1−1,k2+1(t)

n−X(t)
· 1k1>0 −

Mk1,k2(t)

n−X(t)

)

Γ(t)

−2(B(t) + M(t))

n

A(t)

2

Ck1,k2(t)

n−X(t)
− 2Bk1,k2(t)

n
− 2Mk1,k2(t)

n

+
2R(t)

n

(

Mk1−1,k2+1(t)

n−X(t)
· 1k1>0 −

Mk1,k2(t)

n−X(t)
− Ck1,k2(t)

n−X(t)

)

Γ(t)

+
(X(t) − 5L(t))

n

Ck1−1,k2(t)

D(t)
+

R(t)

n

Ck1,k2−1(t)

D(t)

+
Bk1+1,k2−1(t)

n
· 1k2>0 −

Bk1,k2(t)

n
+ O(1/n). (15)

In order to prove the expected differences, we analyze the expected values of the random variables
∆R(t) and ∆Ck1,k2(t) when ut+1 lands in subset A ⊆ [n] for a number of choices of A. More
precisely, we derive tables for E[∆R(t) ·1ut+1∈A | Ht] and E[∆Ck1,k2(t) · 1ut+1∈A | Ht] when A ⊆ [n]
varies across a number of subsets. Since these are disjoint subsets of [n], and the random variables
are 0 if ut+1 lands outside of these subsets, we can sum the second column entries to get the claimed
expected differences. Note that the entries of our tables do not contain the often necessary O(1/n)
term.

In all our below explanations, we abuse notation and simultaneously identify our random vari-
ables as sets (i.e., Ck1,k2(t) denotes the set of unsaturated vertices of type (k1, k2) after t steps).

A ⊆ [n] E[∆R(t) · 1ut+1∈A | Ht]

Ut 0

V (Yt)
Y (t)
n

(

2M(t)
n−X(t) −

2R(t)
n−X(t)

)

Path distance 1 from Bt −2B(t)
n

R(t)Γ(t)
n−X(t) +

∑

j,h:
j+h∈{q−1,q}

2Bj,h(t)
n

(

h + Y (t)
n−X(t)

M(t)
n−X(t)

)

Path distance 1 from Mt −2M(t)
n

R(t)Γ(t)
n−X(t) +

∑

j,h:
j+h∈{q−1,q}

2Mj,h(t)
n

(

h + Y (t)
n−X(t)

M(t)
n−X(t)

)

Path distance 1 from Rt −2R(t)
n

(

1 + R(t)Γ(t)
n−X(t)

)

+ 2R(t)
n

M(t)Γ(t)
n−X(t)

Rt
−R(t)

n

Table 1. Expected Changes to ∆R(t).

Proof Sketch of Table 1. We provide complete proofs only of row entries 2 and 3, as the remaining
entries follow similarly.

In order to see the second entry, expose the blue edges adjacent to Mt, and the red edges adjacent
to Rt. If we then fix an arbitrary edge yy′ ∈ Yt, we know that it is distributed u.a.r. amongst
(

[n]\V (Pt)
2

)

. Thus, in expectation there are 2M(t)/(n − X(t)) blue edges adjacent to the vertices
of yy′. Now, if ut+1 lands on y or y′, then a path augmentation is made, and these blue edges
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are destroyed, thus converting 2M(t)/(n−X(t)) blue vertices to red vertices in expectation. Since

this event occurs with probability Y (t)/n, this accounts for the Y (t)
n

2M(t)
n−X(t) term. An analogous

argument applies to the −Y (t)
n

2R(t)
n−X(t) term.

Consider now the third row entry, where we shall first derive the −2B(t)
n

R(t)
n−X(t)

(

1 + Y (t)
n−X(t)

)

term. Suppose that b is a blue vertex, with blue edge bx. Observe that there are R(t)/(n −X(t))

red edges adjacent to x in expectation. Thus, R(t)
n−X(t) red edges are destroyed in expectation if ut+1

lands next to a blue vertex. Since ut+1 lands next to a blue vertex with probability 2B(t)/n, the

−2B(t)
n

R(t)
n−X(t) terms follows. The −2B(t)

n
R(t)

n−X(t)
Y (t)

1−X(t) terms follows by observing that x = y for

some yy′ ∈ Yt with probability Y (t)
1−X(t) . When this occurs, by computing the expected number of

red edges adjacent to y′, an additional 2B(t)
n

R(t)
n−X(t) red edges are destroyed in expectation. These

two cases account for the −2B(t)
n

R(t)
n−X(t)

(

1 + Y (t)
n−X(t)

)

term.

We now derive the term:
∑

j,h:
j+h∈{q−1,q}

2Bj,h(t)

n

(

h +
Y (t)

n−X(t)

M(t)

n−X(t)

)

.

Suppose that ut+1 lands next to a blue vertex of Bj,h(t), which occurs with probability 2Bj,h(t)/n.
Let b be such a vertex, and denote its blue edge by bx. Now, by definition, there are h magenta
vertices whose blue edge is also incident to x. We claim that all h of these magenta vertices will
be reclassified as red vertices provided the following event occurs:

• All the red edges of these h magenta vertices are not adjacent to x.

The latter occurs with probability
(

1 − 1
n−X(t)

)h
= 1−O(1/n), since h is a constant, and n−X(t) =

Ω(n). By summing over j, h ∈ {q − 1, q}, this yields the expression
∑

j,h:
j+h∈{q−1,q}

2hBj,h(t)
n +O

(

1
n

)

,

and the
∑

j,h:
j+h∈{q−1,q}

2Bj,h(t)
n

Y (t)
n−X(t)

M(t)
n−X(t) term follows similarly. �

Consider now ∆Ck1,k2(t), where k1 + k2 = q − 1.

A ⊆ [n] E[∆Ck1,k2(t) · 1ut+1∈A | Ht]

Ut 0

V (Yt)
Y (t)
n

(

2Mk1−1,k2+1(t)

n−X(t) · 1k1>0 − 2Ck1,k2
(t)

n−X(t) − 2Mk1,k2
(t)

n−X(t)

)

Path distance 1 from Bt
2B(t)
n

(

Mk1−1,k2+1(t)

n−X(t) · 1k1>0 − Mk1,k2
(t)

n−X(t)

)

Γ(t) − 2B(t)
n

A(t)
2

Ck1,k2
(t)

n−X(t) − 2Bk1,k2
(t)

n

Path distance 1 from Mt
2M(t)

n

(

Mk1−1,k2+1(t)

n−X(t) · 1k1>0 − Mk1,k2
(t)

n−X(t)

)

Γ(t) − 2M(t)
n

A(t)
2

Ck1,k2
(t)

n−X(t) − 2Mk1,k2
(t)

n

Path distance 1 from Rt
2R(t)
n

(

Mk1−1,k2+1(t)

n−X(t) · 1k1>0 − Mk1,k2
(t)

n−X(t) − Ck1,k2
(t)

n−X(t)

)

Γ(t)

Qt − (X(t)−5L(t))
n

Ck1,k2
(t)

D(t)

Rt −R(t)
n

Ck1,k2
(t)

D(t)

Bt −Bk1,k2
(t)

n +
Bk1+1,k2−1(t)

n · 1k2>0

Table 2. Expected Changes to ∆Ck1,k2(t) for k1 + k2 = q − 1.



18 ALAN FRIEZE, PU GAO, CALUM MACRURY, PAWE L PRA LAT, AND GREGORY B. SORKIN

Proof Sketch of Table 2. Assume that k1, k2 are both non-zero, as this is the most involved case.
We provide complete proofs of row entries 2, 5 and 6.

We begin with row entry 2. Observe that ut+1 lands on a vertex of an edge of Yt, say yy′, with
probability Y (t)/n. At this point, a path augmentation occurs, and yy′ is added to the current
path Pt, thus destroying the red and blue edges adjacent to y and y′. We claim that

E[∆Ck1,k2(t) | Ht, {ut+1 ∈ V (Yt)}] =
2Mk1−1,k2+1(t)

n−X(t)
· 1k1>0 −

2Ck1,k2(t)

n −X(t)
− 2Mk1,k2(t)

n−X(t)
.

Let us focus on the −2Ck1,k2
(t)

n−X(t) − 2Mk1,k2
(t)

n−X(t) term. In order to see this, fix an unsaturated vertex

c of type (k1, k2). We shall prove that c is destroyed (i.e., removed from Ck1,k2(t)) with probability
(k2 + 1)/(n − X(t)) + O(1/n2), conditional on Ht and {ut+1 ∈ V (Yt)}. By summing over all

c ∈ Ck1,k2(t) and using the fact that k2 ·Ck1,k2(t) = Mk1,k2(t), this yields the −2Ck1,k2
(t)

n−X(t) − 2Mk1,k2
(t)

n−X(t)

term. The
2Mk1−1,k2+1(t)

n−X(t) term follows similarly, where reclassifying unsaturated vertices of type

(k1 − 1, k2 + 1) to type (k1, k2) causes Ck1,k2(t) to increase.
Let us now prove the above claim regarding c ∈ Ck1,k2(t), where we condition on Ht and ut+1 = y

for some yy′ ∈ Yt in the below explanations. Suppose that m1, . . . ,mk2 are the magenta neighbours
of c of type (k1, k2). By definition, cmi is coloured blue, and each mi also has a red edge mixi for
i = 1, . . . , k2. Observe if either y or y′ is equal to c, then c will be added to the path (and thus
destroyed). Similarly, if xi is added to the path, then the edge mixi is no longer red. In particular,
mi is converted to a blue vertex, and so the type of c is reclassified as (k1 +1, k2−1). In either case,
c is destroyed. Now, x1, . . . , xk2 are distributed u.a.r. and independently amongst [n] \ V (Pt), and

so the vertices c, x1, . . . , xk2 are distinct with probability
∏k2

i=1

(

1 − i
n−X(t)

)

= 1 − O(1/n), where

we have used the fact that k2 is a constant and n − X(t) = Ω(n). Moreover, yy′ is distributed

u.a.r. and independently amongst
([n]\V (Pt)

2

)

. Thus, conditional on the vertices c, x1, . . . , xk2 being
distinct, c is destroyed with probability

2(k2 + 1)

n−X(t)
−

(k2+1
2

)

(n−X(t)
2

)
=

2(k2 + 1)

n−X(t)
−O(1/n2).

As such, c is destroyed with the claimed probability of 2(k2 + 1)/(n −X(t)) + O(1/n2).
Consider row entry 6. We begin by deriving the expression:

2R(t)

n

(

1 +
Y (t)

1 −X(t)

)(

−Mk1,k2(t)

n−X(t)
− Ck1,k2(t)

n−X(t)

)

. (16)

First, condition on the event when ut+1 lands at path distance one from some (red) vertex r ∈ Rt.
This occurs with probability 2R(t)/n. Let rx be the unique red edge of r, where x ∈ [n] \ V (Pt).
We also condition on the event that x = y for some yy′ ∈ Yt, which occurs with probability
Y (t)/(1 −X(t)). Observe that when these events occur, DegreeGreedy adds x and y′ to the path
Pt via a path augmentation, and thus destroys the red and blue edges adjacent to x and y′.

Fix a vertex c ∈ Ck1,k2(t). Conditional on the above events, we claim that c is destroyed with
probability 2(k2 + 1)/(n − X(t)) + O(1/n2). To see this, observe that xy′ is distributed u.a.r.

amongst
([n]\V (Pt)

2

)

. Thus, the same argument used to derive row entry 2 applies in this case. By
summing over all c ∈ Ck1,k2(t) (and multiplying by 2R(t)/n and Y (t)/(1 −X(t))), this yields the
term

2R(t)

n

Y (t)

1 −X(t)

(

−2Mk1,k2(t)

n−X(t)
− 2Ck1,k2(t)

n −X(t)

)

.

In order to complete the derivation of (16), we consider the event when x is not a vertex of an edge
of Yt. In this case, we only need to account for the red and blue edges destroyed when x is added
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to the path. This yields the following term:

2R(t)

n

(

1 − Y (t)

1 −X(t)

)(

−Mk1,k2(t)

n−X(t)
− Ck1,k2(t)

n−X(t)

)

.

The remaining term 2R(t)
n

(

1 + Y (t)
1−X(t)

)

Mk1−1,k2+1(t)

n−X(t) · 1k1>0 missing from (16) follows by a similar

argument, where we destroy vertices of Ck1−1,k2+1(t) to create new vertices of Ck1,k2(t).
Let us now consider row entry 6 when ut+1 lands on a permissible vertex x ∈ Qt. Clearly, this

event occurs with probability |Qt|/n = (X(t) − 5L(t))/n. In this case, the algorithm chooses vt+1

u.a.r. amongst D(t), the unsaturated vertices of minimum degree q− 1, and colours the edge xvt+1

blue. Thus, if we fix c ∈ Ck1,k2(t), then c will be chosen with probability 1/D(t) since k1+k2 = q−1.
In this case, c gains a blue edge connected to a blue vertex, and thus will be reclassified as type

(k1+1, k2). Thus, each c ∈ Ck1,k2(t) will be reclassified with probability X(t)−5L(t)
n

1
D(t) . By summing

over all c ∈ Ck1,k2(t), we get the − (X(t)−5L(t))
n

Ck1,k2
(t)

D(t) term. �

Finally, when k1 + k2 = q, the expressions in rows 6 and 7 are modified slightly.

A ⊆ [n] E[∆Ck1,k2(t) · 1ut+1∈A | Ht]

Ut 0

V (Yt)
Y (t)
n

(

2Mk1−1,k2+1(t)

n−X(t) · 1k1>0 − 2Ck1,k2
(t)

n−X(t) − 2Mk1,k2
(t)

n−X(t)

)

Path distance 1 from Bt
2B(t)
n

(

Mk1−1,k2+1(t)

n−X(t) · 1k1>0 − Mk1,k2
(t)

n−X(t)

)

Γ(t) − 2B(t)
n

A(t)
2

Ck1,k2
(t)

n−X(t) − 2Bk1,k2
(t)

n

Path distance 1 from Mt
2M(t)

n

(

Mk1−1,k2+1(t)

n−X(t) · 1k1>0 − Mk1,k2
(t)

n−X(t)

)

Γ(t) − 2M(t)
n

A(t)
2

Ck1,k2
(t)

n−X(t) − 2Mk1,k2
(t)

n

Path distance 1 from Rt
2R(t)
n

(

Mk1−1,k2+1(t)

n−X(t) · 1k1>0 − Mk1,k2
(t)

n−X(t) − Ck1,k2
(t)

n−X(t)

)

Γ(t)

Qt
(X(t)−5L(t))

n

Ck1−1,k2
(t)

D(t)

Rt
R(t)
n

Ck1,k2−1(t)

D(t)

Bt −Bk1,k2
(t)

n +
Bk1+1,k2−1(t)

n · 1k2>0

Table 3. Expected Changes to ∆Ck1,k2(t) for k1 + k2 = q

Proof Sketch of Table 3. The explanations for the case of k1 + k2 = q are identical to those of
k1 + k2 = q − 1, except that vertices of type (k1, k2) are created (instead of destroyed) when ut+1

satisfies ut+1 ∈ Qt or ut+1 ∈ Rt. �

We are now ready to inductively prove Lemma 2.7. Firstly, when q = 0, by definition τ0 = 0, and
so σ0 := 0 trivially satisfies the conditions of Lemma 2.7. Let us now assume that q ≥ 1 and for
each of 0 ≤ i ≤ q−1 we have defined σi and functions x, r, y and cj,h on [0, σi] for each j, h ≥ 0 with
j + h = i, and Lemma 2.7 holds for all 0 ≤ i ≤ q − 1. We shall define σq which satisfies σq > σq−1,
extend each x, r, y and cj,h to [0, σq], and define new functions ck1,k2 on [0, σq ] for k1 + k2 = q. We
shall then prove that these functions satisfy the assertion of Lemma 2.7 with respect to τq and σq,
which will complete the proof of the lemma.

Fix a sufficiently small constant ε > 0, and define the bounded domain Dε as the points
(s, x, y, r, (cj,h)j+h∈{q−1,q}) such that

σq−1 − 1 < s < 3, |x| < 1 − ε, |y| < 2, |r| < 2, |cj,h| < 2, ε <
∑

j,h: j+h=q−1

cj,h < 2.
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It will be convenient to define auxiliary functions to simplify our equations below. Specifically,
set bk1,k2 = k1 · ck1,k2 and mk1,k2 := k2 · ck1,k2 , as well as b =

∑

j,h:
j+h∈{q−1,q}

bj,h and m =
∑

j,h:
j+h∈{q−1,q}

mj,h. Finally, set ℓ = b + m + r and d =
∑

j,h:
j+h=q−1

cj,h, as well as γ = 1 + y/(1 − x)

and a = 2y/(1 − x). Observe the following system of differential equations:

x′ = 2(y + ℓγ) (17)

y′ = −2y + 2 (1 − x− y) − 2aℓ, (18)

and

r′ = y

(

2m

1 − x
− 2r

1 − x

)

− 2(b + m)
rγ

1 − x

+
∑

j,h:
j+h∈{q−1,q}

2bj,h

(

h +
y

1 − x

m

1 − x

)

+
∑

j,h:
j+h∈{q−1,q}

2mj,h

(

h +
y

1 − x

m

1 − x

)

−2r

(

1 +
rγ

1 − x

)

+ 2r
mγ

1 − x
− r + O(1/n). (19)

If k1 + k2 = q − 1, then:

c′k1,k2 = y

(

2mk1−1,k2+1

1 − x
· 1k1>0 −

2ck1,k2
1 − x

− 2mk1,k2

1 − x

)

+2(b + m)

(

mk1−1,k2+1

1 − x
· 1k1>0 −

mk1,k2

1 − x

)

γ

−2(b + m)
a

2

ck1,k2
1 − x

− 2bk1,k2 − 2mk1,k2

+2r

(

mk1−1,k2+1

1 − x
· 1k1>0 −

mk1,k2

1 − x
− ck1,k2

1 − x

)

γ

−(x− 5ℓ)
ck1,k2
d

− r
ck1,k2
d

+ bk1+1,k2−1 · 1k2>0 − bk1,k2 . (20)

Otherwise, that is, if k1 + k2 = q, then:

c′k1,k2 = y

(

2mk1−1,k2+1

1 − x
· 1k1>0 −

2ck1,k2
1 − x

− 2mk1,k2

1 − x

)

+2(b + m)

(

mk1−1,k2+1

1 − x
· 1k1>0 −

mk1,k2

1 − x

)

γ

−2(b + m)
a

2

ck1,k2
1 − x

− 2bk1,k2 − 2mk1,k2

+2r

(

mk1−1,k2+1

1 − x
· 1k1>0 −

mk1,k2

1 − x
− ck1,k2

1 − x

)

γ

+(x− 5ℓ)
ck1−1,k2

d
+ r

ck1,k2−1

d
+ bk1+1,k2−1 · 1k2>0 − bk1,k2 . (21)

The right-hand side of each of the above equations is Lipchitz on the domain Dε, as d is bounded
below by ε, and |x| < 1 − ε. Define

TDε := min{t ≥ 0 : (t/n,X(t)/n, Y (t)/n,R(t)/n, (Ck1,k2(t)/n)k1+k2∈{q,q−1}) /∈ Dε}.
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By the inductive assumption, the ‘Initial Condition’ of Theorem A.1 is satisfied for some λ = o(1)
and values σq−1, x(σq−1), r(σq−1) and cj,h(σq−1), where cj,h(σq−1) := 0 for j+h = q. Moreover, the
‘Trend Hypothesis’ is satisfied with δ = O(1/n), by the expected differences of (11)–(15). Finally,
the ‘Boundedness Hypothesis’ is satisfied with β = O(log n) and β′ = O(n−1) by Lemma 2.8. Thus,
by Theorem A.1, for every ξ > 0, a.a.s. X(t) = nx(t/n) + o(n), R(t) = nr(t/n) + o(n), Y (t) =
ny(t/n) + o(n) and Ck1,k2(t) = nck1,k2(t/n) + o(n) uniformly for all σq−1n ≤ t ≤ (σ(ε)− ξ)n, where
x, r, y and ck1,k2 are the unique solution to (17)–(21) with the above initial conditions, and σ(ε)
is the supremum of s to which the solution can be extended before reaching the boundary of Dε.
This immediately yields the following lemma.

Lemma 2.9 (Concentration of DegreeGreedy’s Random Variables). For every ξ > 0, a.a.s. for all
τq−1 ≤ t ≤ (σ(ε) − ξ)n and k1, k2 ≥ 0 such that k1 + k2 ∈ {q, q − 1},

max{|X(t) − x(t/n)n|, |Y (t) − y(t/n)n|, |R(t) − r(t/n)n|, |Ck1,k2(t) − ck1,k2(t/n)n|} = o(n).

As Dε ⊆ Dε′ for every ε > ε′, σ(ε) is monotonically nondecreasing as ε → 0, and so σq :=
limε→0+ σ(ε) exists. Moreover, the derivatives of the functions x, r, y and ck1,k2 are uniformly
bounded on (σq−1, σq), as d =

∑

j,h:
j+h=q−1

cj,h, so cj,h/d ≤ 1 for j + h = q− 1. This implies that the

functions are uniformly continuous, and so (uniquely) continuously extendable to [σq−1, σq]. The
following limits thus exist:

x(σq) := lim
s→σq−

x(s) (22)

y(σq) := lim
s→σq−

y(s) (23)

r(σq) := lim
s→σq−

r(s) (24)

ck1,k2(σq) := lim
s→σq−

ck1,k2(s). (25)

Random variables |R(t)/n|, |Y (t)/n| and |Ck1,k2(t)/n| for k1 + k2 ∈ {q, q − 1} are bounded by 1
for all t. Thus, when t/n approaches σq, X(t)/n approaches 1, t/n approaches 3, or D(t)/n :=
∑

j,h:
j+h=q−1

Cj,h(t)/n approaches 0. Formally, we have the following proposition:

Proposition 2.10. For every ε > 0, there exists ξ > 0 such that a.a.s. one of the following holds.

• D(t) < εn for all t ≥ (σq − ξ)n;
• X(t) > (1 − ε)n for all t ≥ (σq − ξ)n;
• σq = 3.

The ordinary differential equations (17)–(21) again do not have an analytical solution. However,
numerical solutions show that σq < 3, and x(σq) < 1. Thus, after executing DegreeGreedy for
t = σqn + o(n) steps, there are D(t) < εn vertices of type q − 1 remaining for some ε = o(1). At
this point, by observing the numerical solution (22)–(25) at σq, we know that there exists some
absolute constant 0 < p < 1 such that (X(t) − 5L(t))/n ≥ p, where we recall that L(t) counts the
total number of coloured vertices at time t. Hence, at each step, some vertex of type q− 1 becomes
of type q with probability at least p. Thus, by applying Chernoff’s bound, one can show that a.a.s.
after another O(εn/p) = o(n) rounds, all vertices of type q − 1 are destroyed. It follows that a.a.s.
|τq/n− σq| = o(1), and so Lemma 2.7 is proven.

3. Proof of Theorem 1.2

Suppose that Gt is the graph constructed by a strategy after t rounds, whose edges are (ui, vi)
t
i=1.

When proving Theorem 1.2, it is convenient to refer to the random vertex ui as a square, and vi
as a circle so that every edge in Gt joins a square with a circle. Recall that for a vertex x ∈ [n],
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we say that the square ui lands on x, or that x is hit/covered by ui. We extend the analogous
terminology to circles.

We begin with the following observations:

(O1) H uses exactly n squares;
(O2) H uses at most 2 squares on each vertex;
(O3) Suppose (ui, vi) is an edge of Gt, and vi received at least two squares. Then, either H uses

at most one square on vi, or H does not contain the edge (ui, vi).

The first two observations above are obvious. For (O3), notice that if H uses exactly 2 squares on
vi, then these 2 squares correspond to 2 edges in H that are incident to vi. Moreover, neither of
these edges can be (ui, vi), as ui is the square of (ui, vi). Thus, the edge (ui, vi) cannot be used by
H as vi has degree 2 in H.

Define Zx as the number of squares on vertex x ∈ [n]. The observation (O2) above indicates the
consideration of the random variable

Z =
n
∑

x=1

(1Zx=1 + 2 · 1Zx≥2) = 2n−
n
∑

x=1

(2 · 1Zx=0 + 1Zx=1) ,

which counts the total number of squares that can possibly contribute to H, truncated at 2 for each
vertex. Observation (O3) above indicates the consideration of the following two sets of structures.
Let W1 be the set of pairs of vertices (x, y) at time t such that

(a) x receives its first square at some step i < t, and y receives the corresponding circle in the
same step;

(b) no more squares land on x after step i;
(c) at least two squares land on y after step i.

Let W2 be the set of pairs of vertices (x, y) at time t such that

(a) x receives a square at some step i < t, and y receives the corresponding circle in the same
step;

(b) x receives exactly two squares (the other square may land on x either before or after step
i);

(c) at least two squares land on y after step i.

Note that for every (x, y) ∈ W1, at most 2 squares on x and y together can be used in H,
although x and y together contribute 3 to the value of Z. Similarly, for every (x, y) ∈ W2, at most
3 squares on x and y together can be used in H, although x and y together contribute 4 to the
value of Z. We prove the following upper bound on the total number of squares that can possibly
contribute to the construction of H.

Let

T1 = {((x1, y1), (x2, y2)) ∈ W1 ×W2 : y1 = x2}
T2 = {((x1, y1), (x2, y2)) ∈ W2 ×W2 : y1 = x2}.

Let W := |T1| + |T2|.
Claim 3.1. The total number of squares contributing to H is at most Z − |W1| − |W2| + W .

Proof of Claim 3.1. By the discussions above, the total number of squares contributing to
H is at most Z − |W1| − |W2| + Z ′ where Z ′ accounts for double counting caused by distinct
(x1, y1), (x2, y2) ∈ W1 ∪W2 where {x1, y1} ∩ {x2, y2} 6= ∅. We bound Z ′ by W by considering the
following cases.

Case 1: We first consider the case that (x1, y1), (x2, y2) ∈ W1 where (x1, y1) 6= (x2, y2) and
{x1, y1} ∩ {x2, y2} 6= ∅. The only possible situation is y1 = y2. In this case, only 2 squares out of
the four squares on x1, x2 and y1 that were counted by Z can contribute to H; hence there is no
double counting (i.e. the offset is -2 as correctly carried out in −|W1| − |W2|).
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Case 2: The second case involves ((x1, y1), (x2, y2)) ∈ W1 × W2 where {x1, y1} ∩ {x2, y2} 6= ∅.
Obviously, x1 6= x2 and x1 6= y2. We consider the two possible subcases:

Case 2’, x2 = y1: In this case, there are 5 squares on the three vertices x1, y1 = x2, and y2 that
were counted by Z, and at most 4 can contribute to H by using the two squares on y1 = x2 and
the two squares on y2. Thus, each such structure causes one double counting and this explains the
term |T1| in W ;

Case 2”, y1 = y2: In this case, there are 5 squares on the three vertices x1, x2, and y1 = y2 that
were counted by Z, and at most 3 can contribute to H. Thus, there is no double counting in this
subcase.

Case 3: The third case involves (x1, y1), (x2, y2) ∈ W2 where (x1, y1) 6= (x2, y2) and {x1, y1} ∩
{x2, y2} 6= ∅. We consider the two possible subcases:

Case 3’, y1 = x2 (and symmetrically y2 = x1): in this subcase, at most 5 squares out of the 6
squares on the three vertices that were counted by Z can be used to construct H (by using two
squres on x1; two squares on y2 and one square on y1 = x2). Note also that for the two pairs
of edges (x1, y1) and (x2, y2) considered here, we may always label them so that y1 = x2. This
explains the |T2| term in W .

Case 3”, y1 = y2 or x1 = x2: at most 4 squares out of the 6 squares on the three vertices that
were counted by Z can be used to construct H; thus there is no double counting in this case. �

The random variable Z is well understood. From the limiting Poisson distribution of the number
of squares in a single vertex, we immediately get that, a.a.s., Z ∼ (2 − 2e−s − e−ss)n for s := t/n.

We will estimate the expectation of |W1|, |W2|, |T1|, |T2| as well as the concentration of these
random variables. However, concentration may fail if the semi-random process uses a strategy
which places many circles on a single vertex. Intuitively, placing many circles on a single vertex is
not a good strategy for quickly building a Hamiltonian cycle, as it wastes many edges. To formalise
this idea, let µ :=

√
n (indeed, choosing any µ such that µ → ∞ and µ = o(n) will work). We say

that a strategy for the semi-random process is µ-well-behaved up until step t, if no vertex receives
more than µ circles in the first t steps. In [18, Definition 3.2 – Proposition 3.4], it was proven that
it is sufficient to consider µ-well-behaved strategies in the first t = O(n) steps for establishing a
lower bound on the number of steps needed to build a perfect matching. These definitions and
proofs can be easily adapted for building Hamilton cycles in an obvious way. We thus omit the
details and only give a high-level explanation below.

The key idea is that within t = O(n) steps of any semi-random process, the number of vertices
of in-degree greater than µ is at most O(n/µ) = o(n). Therefore, if a Hamiltonian cycle C is built
in t steps, then the subgraph H of C induced by the set S of vertices of in-degree at most µ in Gt

is a collection of paths spanning all vertices in S which must also contain n−O(n/µ) = (1− o(1))n
edges. We call such a pair (S,H) an approximate Hamiltonian cycle. It follows from the above
argument that it takes at least as long time to build a Hamiltonian cycle as to build an approximate
Hamiltonian cycle. It is then easy to show by a coupling argument that if a strategy builds an
approximate Hamiltonian cycle in t = O(n) steps, then there exists a well-behaved strategy that
builds an approximate Hamiltonian cycle in t steps as well. Note that observations (O2)–(O3) hold
for approximate Hamiltonian cycles, and (O1) holds for approximate Hamiltonian cycles with n
replaced by (1 − o(1))n. Thus, the following condition has to be satisfied at the time when an
approximate Hamiltonian cycle is built:

Z − |W1| − |W2| + W ≥ (1 − o(1))n.

We now estimate the sizes of W1, W2, T1, and T2 in the semi-random process when executing a
well-behaved strategy S. Crucially, the sizes of these sets do not rely on the decisions made by S.
Recall that (GS

s )s≥0 denotes the sequence of graphs produced by S.
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Lemma 3.2. Suppose S is µ-well-behaved. For every t = Θ(n), a.a.s. the following holds in GS
t ,

Z − |W1| − |W2| + W ∼ f(s)n,

where s := t/n and f(s) is defined as in Theorem 1.2.

Proof. Suppose S is µ-well-behaved until time t = Θ(n). We shall prove that a.a.s. the following
properties hold for GS

t :

|W1| ∼ n
∑

i≤t

1

n

(

1 − 1

n

)t
∑

i<j1<j2≤t

1

n2

(

1 − 1

n

)j2

(26)

|W2| ∼ n
∑

i1<i2≤t

1

n2

(

1 − 1

n

)t




∑

i1<j1<j2≤t

1

n2

(

1 − 1

n

)j2

+
∑

i2<j1<j2≤t

1

n2

(

1 − 1

n

)j2



 (27)

|T1| ∼ n
∑

i≤t

1

n

(

1 − 1

n

)t
∑

i<j1<j2≤t

1

n2

(

1 − 1

n

)t

×





∑

j1<h1<h2≤t

1

n2

(

1 − 1

n

)h2

+
∑

j2<h1<h2≤t

1

n2

(

1 − 1

n

)h2



 (28)

|T2| ∼ n
∑

i1<i2≤t

1

n2

(

1 − 1

n

)t
∑

i1<j1<j2≤t

1

n2

(

1 − 1

n

)t

×





∑

j1<h1<h2≤t

1

n2

(

1 − 1

n

)h2

+
∑

j2<h1<h2≤t

1

n2

(

1 − 1

n

)h2





+
∑

i1<i2≤t

1

n2

(

1 − 1

n

)t
∑

i2<j1<j2≤t

1

n2

(

1 − 1

n

)t

×





∑

j1<h1<h2≤t

1

n2

(

1 − 1

n

)h2

+
∑

j2<h1<h2≤t

1

n2

(

1 − 1

n

)h2



 . (29)

We prove (26) and briefly explain the expressions in (27)–(29) whose proofs are similar to that
of (26). Fix a vertex x ∈ [n] and a square ui for i ≤ t. The probability that ui lands on x in step i
is 1/n. Condition on this event. The probability that x receives no squares in any steps other than
i is (1 − 1/n)t−1 ∼ (1 − 1/n)t. Let y be the vertex which the strategy chooses to pair ui with. Fix
any two integers i < j1 < j2 ≤ t, the probability that y receives its first two squares at times j1 and
j2 is asymptotically n−2(1 − 1/n)j2 . Summing over all possible values of i, j1, j2 and multiplying
by n, the number of choices for x, gives E|W1|.

For concentration of |W1| we prove that E|W1|2 ∼ (E|W1|)2. For any pair of ((x1, y1), (x2, y2))
in W1 ×W1, either x1, y1, x2, y2 are pairwise distinct, or y1 = y2. It is easy to see that the expected
number of pairs where x1, y1, x2, y2 are pairwise distinct is asymptotically

n2
∑

i1≤t
i2≤t

1

n2

(

1 − 1

n

)2t
∑

i1≤j1<j2≤t
i2≤h1<h2≤t

1

n4

(

1 − 1

n

)j2+h2

∼ (E|W1|)2.

The expected number of pairs where y1 = y2 is at most µn as there are most n choices for x1 and
given (x1, y1), there can be at most µ choices for (x2, y2) since S is µ-well-behaved. Since µ = o(n),
µn = o(n2) which is o((E|W1|)2). Thus we have verified that E|W1|2 ∼ (E|W1|)2 and thus by the
second moment method, a.a.s. |W1| ∼ E|W1|.
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The proofs for the expectation and concentration of |W2|, |T1| and |T2| are similar. We briefly
explain the expressions in (27)–(29):

In (27), i1 and i2 denote the two steps at which x receives a square. Since there are two squares
on x, there are two choices of circles, namely vi1 and vi2 . The two summations over (j1, j2) accounts
for the two choices of vi1 and vi2 , depending on which is to be covered by two squares. Thus, j1

and j2 denote the steps where the first two squares on vi1 or vi2 arrive.
In (28), i denotes the step where x1 receives its only square; j1 and j2 denote the two steps where

y1 = x2 receives its two squares. Hence, there are two choices for y2, and h1 and h2 denote the two
steps of the first two squares y2 receives.

In (29), i1 and i2 denote the two steps where x1 receives its two squares—hence there are two
choices for y1. Integers j1 and j2 denote the two steps where y1 = x1 receives its two squares—
hence there are two choices for y2. Finally, h1 and h2 denote the steps where y2 receives its first
two squares.

By applying the above equations, we deduce that for t = sn,

|W1| ∼ ne−s

∫ s

0
dx

∫ s

x
dy1

∫ s

y1

e−y2dy2 = ne−s

(

1 − e−ss2

2
− e−ss− e−s

)

|W2| ∼ ne−s

∫ s

0
dx1

∫ s

x1

dx2

(
∫ s

x1

dy1

∫ s

y1

e−y2dy2 +

∫ s

x2

dy1

∫ s

y1

e−y2dy2

)

= ne−s

(

s− e−ss2 − e−ss3

2
− e−ss

)

|T1| ∼ ne−2s

∫ s

0
dx

∫ s

x
dy1

∫ s

y1

dy2

(∫ s

y1

dz1

∫ s

z1

e−z2dz2 +

∫ s

y2

dz1

∫ s

z1

e−z2dz2

)

= ne−2s

(

−1 + s− e−ss3

3
− e−ss2

2
− e−ss4

8
+ es

)

|T2| ∼ ne−2s

∫ s

0
dx1

∫ s

x1

dx2

∫ s

x1

dy1

∫ s

y1

dy2

(∫ s

y1

dz1

∫ s

z1

e−z2dz2 +

∫ s

y2

dz1

∫ t

z1

e−z2dz2

)

+ ne−2s

∫ s

0
dx1

∫ s

x1

dx2

∫ s

x2

dy1

∫ s

y1

dy2

(∫ s

y1

dz1

∫ s

z1

e−z2dz2 +

∫ s

y2

dz1

∫ s

z1

e−z2dz2

)

= ne−2s

(

−s + s2 − e−ss

(

s4

8
+

s3

3
+

s2

2
− 1

))

.

It follows now that Z − |W1| − |W2| + W ∼ f(s)n where we recall that

f(s) = 2 + e−3s(s + 1)

(

1 − s2

2
− s3

3
− s4

8

)

+ e−2s

(

2s +
5s2

2
+

s3

2

)

− e−s (3 + 2s) .

This finishes the proof of the lemma. �

Proof of Theorem 1.2. Recall that β is the positive root of f(s) = 1. Then, for every ε > 0,
Z − |W1| − |W2| + W ≤ (1 − O(ε))n a.a.s. in GS

(β−ε)n for any µ-well-behaved S. Therefore,

CHAM ≥ β. �

4. Conclusion and Open Problems

We have made significant progress on reducing the gap between the previous best upper and
lower bounds on CHAM. That being said, we do not believe that any of our new bounds are tight.
For instance, in the case of our lower bound, one could study the appearance of more complicated
substructures which prevent any strategy from building a Hamiltonian cycle. One way to likely
improve the upper bound would be to analyze an adaptive algorithm whose decisions are all made
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greedily. In the terminology of DegreeGreedy, when a (second) square lands on a blue vertex,
choose the edge greedily chosen amongst unsaturated vertices of minimum blue degree (as opposed
to u.a.r.). Unfortunately, it seems challenging to analyze this algorithm via the differential equation
method.

Another direction is to understand which graph properties exhibit sharp thresholds. Given prop-
erty P, the definition of CP ensures that there exists a strategy S∗ such that for all ε > 0, GS∗

t (n)
satisfies P a.a.s. for t ≥ (CP + ε)n. On the other hand, GS∗

t (n) may satisfy P with constant proba-
bility for t ≤ (CP −ε)n without contradicting the definition of CP . For P to have a sharp threshold
means that, for every strategy S and ε > 0, if t ≤ (CP − ε)n then, a.a.s., GS

t (n) does not satisfy P.
It is known that for basic properties, such as minimum degree k ≥ 1, sharp thresholds do exist [4].
Moreover, in [3] it was shown that if H is a spanning graph with maximum degree ∆ = ω(log n),
then the appearance of H takes (∆/2 + o(∆))n rounds, and H (deterministically) cannot be con-
structed in fewer than ∆n/2 rounds. However, in general it remains open as to whether or not a
sharp threshold exists when H is sparse (i.e., ∆ = O(log n)). Recently, the third author and Surya
developed a general machinery for proving the existence of sharp thresholds in adaptive random
graph processes [23]. Applied to the semi-random graph process, they show that sharp thresholds
exist for the property of being Hamiltonian and the property of containing a perfect matching.
This provides some evidence that sharp thresholds do exist when ∆ = O(log n), and we leave this
as an interesting open problem.
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[12] Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–

60, 1960.
[13] Nicolas Fraiman, Lyuben Lichev, and Dieter Mitsche. On the power of choice for boolean functions. ArXiv,

abs/2109.13079, 2022.
[14] Alan Frieze and Gregory B Sorkin. Hamilton cycles in a semi-random graph model. arXiv preprint

arXiv:2208.00255, 2022.
[15] David Gamarnik, Mihyun Kang, and Pawel Pralat. Cliques, chromatic number, and independent sets in the

semi-random process, 2023.
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Appendix A. The Differential Equation Method

In this section, we provide a self-contained non-asymptotic statement of the differential equation
method. The statement combines [27, Theorem 2], and its extension [27, Lemma 9], in a form
convenient for our purposes, where we modify the notation of [27] slightly. In particular, we rewrite
[27, Lemma 9] in a less general form in terms of a stopping time T . We need only check the
‘Boundedness Hypothesis’ (see below) for 0 ≤ t ≤ T , which is exactly the setting of Lemmas 2.1
and 2.8. A similar theorem is stated in [6, Theorem 2].

Suppose we are given integers a, n ≥ 1, a bounded domain D ⊆ R
a+1, and functions (Fk)1≤k≤a

where each Fk : D → R is L-Lipschitz-continuous on D for L ≥ 0. Moreover, suppose that
R ∈ [1,∞) and S ∈ (0,∞) are any constants which satisfy max1≤k≤a |Fk(x)| ≤ R for all x =
(s, y1, . . . , ya) ∈ D and 0 ≤ s ≤ S.

Theorem A.1 (Differential Equation Method, [27]). Suppose we are given σ-fields F0 ⊆ F1 ⊆ · · · ,
and for each t ≥ 0, random variables ((Yk(t))1≤k≤a which are Ft-measurable. Define TD to be the
minimum t ≥ 0 such that

(t/n, Y1(t)/n, . . . , Yk(t)/n) /∈ D.

Let T ≥ 0 be an (arbitrary) stopping time3 adapted to (Ft)t≥0, and assume that the following
conditions hold for δ, β, γ ≥ 0 and λ ≥ δ min{S,L−1} + R/n:

(i) The ‘Initial Condition’: For some (0, ŷ1, . . . , ŷa) ∈ D,

max
1≤k≤a

|Yk(0) − ŷkn| ≤ λn.

(ii) The ‘Trend Hypothesis’: For each t ≤ min{T, TD − 1},
|E[Yk(t + 1) − Yk(t) | Ft] − Fk(t/n, Y1(t)/n, . . . , Ya(t)/n)| ≤ δ.

(iii) The ‘Boundedness Hypothesis’: With probability 1 − γ,

|Yk(t + 1) − Yk(t)| ≤ β,

for each t ≤ min{T, TD − 1}.

3The stopping time T ≥ 0 is adapted to (Ft)t≥0, provided the event {τ = t} is Ft-measurable for each t ≥ 0.
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Then, with probability at least 1 − 2a exp
(

−nλ2

8Sβ2

)

− γ, we have that

max
0≤t≤min{T,σn}

max
1≤k≤a

|Yk(t) − yk(t/n)n| < 3λ exp(LS)n, (30)

where (yk(s))1≤k≤a is the unique solution to the system of differential equations

y′k(s) = Fk(s, y1(s), . . . , ya(s)) with yk(0) = ŷk for 1 ≤ k ≤ a, (31)

and σ = σ(ŷ1, . . . , ŷa) ∈ [0, S] is any choice of σ ≥ 0 with the property that (s, y1(s), . . . , ya(s)) has
ℓ∞-distance at least 3λ exp(LS) from the boundary of D for all s ∈ [0, σ).

Remark 3. Standard results for differential equations guarantee that (31) has a unique solution
(yk(s))1≤k≤a which extends arbitrarily close to the boundary of D.
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