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Abstract

Given an edge-colored graph, the goal of the proportional fair matching problem is to find a
maximum weight matching while ensuring proportional representation (with respect to the number
of edges) of each color. The colors may correspond to demographic groups or other protected
traits where we seek to ensure roughly equal representation from each group. It is known that,
assuming ETH, it is impossible to approximate the problem with ℓ colors in time 2o(ℓ)nO(1) (i.e.,
subexponential in ℓ) even on unweighted path graphs. Further, even determining the existence of a
non-empty matching satisfying proportionality is NP-Hard. To overcome this hardness, we relax
the stringent proportional fairness constraints to a probabilistic notion. We introduce a notion
we call δ-ProbablyFair, where we ensure proportionality up to a factor of at most (1 ± δ) for
some small δ > 0 with high probability. The violation δ can be brought arbitrarily close to 0 for
some good instances with large values of matching size. We propose and analyze simple and fast
algorithms for bipartite graphs that achieve constant-factor approximation guarantees, and return
a δ-ProbablyFair matching.

1 Introduction

Graph matching, in particular the special case of bipartite matching, is a classical computational prob-
lem with many applications such as ad allocation [Mehta et al., 2007, Mehta, 2013], crowdsourcing [Ho
and Vaughan, 2021, Tong et al., 2016, Hikima et al., 2021, Dickerson et al., 2019], job hiring [Purohit
et al., 2019], organ exchange [Dickerson et al., 2013, McElfresh et al., 2019, Farnadi et al., 2021, Farhadi
et al., 2022], and ride sharing [Hikima et al., 2021, Nanda et al., 2020, Dickerson et al., 2018]. Match-
ing is also a fundamental subroutine in several domains including computer vision [Belongie et al.,
2002], text similarity estimation [Pang et al., 2016] in natural language processing, machine learning
algorithms [Huang and Jebara, 2007, Jebara et al., 2009, Huang and Jebara, 2011, Choromanski et al.,
2013] and computational biology [Zaslavskiy et al., 2009] among others.

In many applications, algorithms are employed to make decisions that could significantly impact the
lives of individuals. In such settings, we ought to ensure fairness and equity in the decision-making
process. However, classical algorithms typically do not consider such socially motivated objectives
and constraints such as fairness or diversity. For instance, a ride-sharing platform may provide better
quality assignments (e.g., with shorter wait times, newer vehicles, or better pricing) to riders from
certain demographic groups while providing lower quality assignments to others as studied by Esmaeili
et al. [2023]. Similarly, cognitive biases from workers can negatively impact the result of crowdsourced
data, which may potentially be mitigated by assigning a diverse set of workers to a wide range of
different task types.

∗A preliminary version of this work appeared in Proceedings of AAAI 2025.
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There are many ways to formalize and incorporate some notion of fairness into the computed
solutions of matching problems (see, e.g., Esmaeili et al. [2023], Bandyapadhyay et al. [2023]). Fol-
lowing the work of Bandyapadhyay et al. [2023], we consider a notion of proportional fairness. This
notion is closely related to the notion of disparate impact [Feldman et al., 2015] and has been explored
in various fundamental problems, including matroid optimization [Chierichetti et al., 2019], cluster-
ing [Bera et al., 2019], online matching [Sankar et al., 2021], set packing [Duppala et al., 2023], spectral
clustering [Kleindessner et al., 2019], and others. In the present work, we consider a formulation of
proportional fairness known as (α, β)-BalancedMatching: given an edge-colored graph (where edge
colors may denote membership in specific groups), the objective is to find a maximum weight match-
ing ensuring that the proportion of edges of any color among all matched edges lies between α and
β where 0≤ α≤ β ≤ 1. We highlight that (α, β)-BalancedMatching adheres to two key criteria:
restricted dominance, which limits the fraction of edges selected from any given group to at most β,
and minority protection, which ensures that the fraction of edges from any given group is at least α.

This notion of fairness can be applied to the applications discussed above, such as in ride-sharing,
job hiring, and crowd sourcing. By assigning colors to edges (rather than only to vertices), the color
is able to capture information about both sides of the match. For instance, in ridesharing, the edge
color may encode information about both the driver (e.g., vehicle type, rating) and rider (e.g., race
or gender), the distance between the driver and rider, and even pricing information (e.g., whether
dynamic or surge pricing is applied). As a concrete example, we may choose to encode information
about a rider’s race or economic status as well as whether an assignment incurs increased fares due to
dynamic pricing; then, an (α, β)-BalancedMatching should ensure that no racial or economic group
receives increased fares disproportionately often compared to other riders. In crowdsourcing, we may
use edge color to encode both the task type and demographic information about the worker to ensure
that a diverse set of workers are assigned to each type of task (for cognitive or human intelligence
tasks, this may increase the diversity of perspectives among responses, and thus the overall quality of
the final aggregate data).

As a final example application, consider online advertising: an edge’s color may encode information
about the type of advertisement (or, in political advertising, the political party sponsoring the ad)
and the user’s personal information. Here, an (α, β)-BalancedMatching would limit the extent
of targeted advertising based on protected demographic traits, which may violate (or appear to vio-
late) a user’s expectations and rights with regards to their privacy and use of their data; the social
consequences of such indiscriminate highly targeted advertising were seen in the real world with the
Cambridge Analytica data scandal around the 2016 US presidential election, which saw Facebook’s
CEO Mark Zuckerberg testify before congress [Lewis and Hilder, 2018, Confessore, 2018].

Unfortunately, although this notion of fairness seems quite powerful, it may in fact be too strong in
the basic formulation: Bandyapadhyay et al. [2023] demonstrated that (α, β)-BalancedMatching
is NP-hard to approximate, even when G is an unweighted path graph.

To address this fundamental hardness, we consider a slightly relaxed probabilistic notion of pro-
portional fairness. Roughly speaking, we allow for small violations of the α and β bounds while still
guaranteeing a constant factor approximation on the overall objective, i.e., the weight of the matching.
Particularly, we ask the following question: does there exists an approximation algorithm with constant
factor violations in fairness while guaranteeing a good approximation on the objective?

We answer this question by designing a 1
2 -approximate algorithm for bipartite graphs and whose

matching is probably1 almost fair. That is, there exists a small constant δ > 0 for which the matching
is (α(1 − δ), β(1 + δ))-balanced with high probability. A formal definition of this notion is given
in Section 3. Thus, while the (α, β)-BalancedMatching formulation of Bandyapadhyay et al.
[2023] remains hard on bipartite graphs, we can achieve our notion of probably almost fair. We note

1i.e., with probability close to 1
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that for the special case when α = 0 and β < 1, we can attain a constant approximation ratio without
violating the fairness constraint at all. Combined with the hardness result of Bandyapadhyay et al.
[2023], this implies that the one-sided fairness case is strictly easier than the two-sided case.

2 Related Work

A significant body of research in fair matching explored various notions of fairness. Among these,
several notions of group fairness, such as socially-fair matching [Bandyapadhyay et al., 2023], fo-
cus on Rawlsian (maxmin) fairness, aiming to maximize the utility for the worst-off group [Esmaeili
et al., 2023]. On the other hand, proportional fairness, as explored in Bandyapadhyay et al. [2023],
Chierichetti et al. [2019], ensures a proportional representation of edges from each group, while leximin
fairness [Garćıa-Soriano and Bonchi, 2020] is also considered. Most of these studies involve assigning
group memberships to vertices in the graph. However, works such as Bandyapadhyay et al. [2023],
Chierichetti et al. [2019] investigate fairness in edge-colored graphs, which aligns with our area of
study. We note that Bandyapadhyay et al. [2023], Chierichetti et al. [2019] focus only on the un-
weighted setting where the objective is the cardinality/size of the output. That being said, our works
are incomparable. While ours applies to edge weighted bipartite graphs, Chierichetti et al. [2019]
consider when the constraint system is described by the intersection of two-matroids (this generalizes
unweighted bipartite matching). They focus on the case of two colors, and present a polynomial-time
algorithm achieving a 3/2-approximation. Bandyapadhyay et al. [2023] consider when input is a gen-
eral graph and the number of colors may be greater than two. They show that approximating the
problem for an arbitrary number of colors is NP-hard and moreover that approximating the optimal
solution requires time exponential in ℓ unless the Exponential Time Hypothesis (ETH) [Impagliazzo
and Paturi, 1999] is false. Their main algorithm therefore runs in time exponential in ℓ, with an
approximation guarantee of 1/(4ℓ). Note that even for the easier case when α = 0, their algorithm
may still violate the fairness constraint imposed by β by a factor up to 1 + 1/ℓ. Their hardness result
motivates our study of the slightly relaxed probabilistic fairness. This relaxation allows us to improve
on the prior work by achieving, in polynomial time, a constant factor (i.e., one half) approximation
in the matching weight while ensuring, with high probability, only a small violation in the fairness
constraints.

3 Preliminaries and Problem Formulation

We denote [k] = {1, . . . , k} for any positive integer k. Consider an undirected bipartite graph G =
(U, V,E) with the set of edges E forming a partition ∪̇c∈[ℓ]Ec, where ∪̇ denotes a disjoint union over
the sets Ec. Each color c ∈ [ℓ] is associated with the set of edges Ec, representing edges of color c.
For any color class c, we define ψc(e) such that ψc(e) = 1 if e ∈ Ec, and ψc(e) = 0 otherwise. A
matching M ⊆ E in G is defined as a subset of edges where no two edges in M share a common
vertex. For a vertex v of G, let N(v) and δ(v) denote the neighbors and incident edges of v, i.e.,
N(v) := {u : (u, v) ∈ E} and δ(v) := {(u, v) : (u, v) ∈ E}. For any α, β ∈ [0, 1] and α ≤ β, we define a
matching M ⊆ E as (α, β)-Balanced if, for each color c ∈ [ℓ], the proportion of edges in M belonging
to color c lies between α and β. In other words, M is (α, β)-Balanced if it contains at least α and at
most β fraction of edges from every color. The goal of the proportional fair matching problem (PFM)
is to find a (α, β)-BalancedMatching of G with maximum weight, and we denote the weight of
such a matching by OPT. Since Bandyapadhyay et al. [2023] proved that it is NP-Hard to verify the
existence of a (α, β)-BalancedMatching in the PFM problem even on unweighted path graphs, we
focus on deriving approximation ratios which hold against OPT.
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3.1 Our Contributions and Techniques

We design Algorithm 1, an efficient randomized algorithm for weighted matching on bipartite graphs
with fairness constraints specified by 0 < α ≤ β < 1. By allowing the α (respectively, β) fairness
constraint to be violated up to a multiplicative factor of 1 − δ (respectively, 1 + δ), we show that
Algorithm 1 attains an asymptotic approximation ratio against OPT. (We write the exact asymptotic
guarantee of Algorithm 1 in Theorem 4.1). We argue that if the input is well-behaved, then we can take
δ ≈ 0, and so we barely violate the fairness constraints, while still attaining a constant approximation
ratio. We next analyze Algorithm 1 when α = 0 and β < 1. By allowing for a 1−ε

2 -approximation
ratio, where 0 < ε < 1 is a parameter of Algorithm 1 which can be chosen arbitrarily small, we
show how to ensure that the β fairness constraints are satisfied exactly. This allows us to get a true
approximation ratio which is arbitrarily close to 1/2. We additionally note that our algorithms can
be extended to the slightly more general setting where we have different proportionality requirements
for each color; e.g., where we have values αc, βc (with 0 ≤ α ≤ β ≤ 1) for each color c ∈ [ℓ], and we
insist that αc|M| ≤ |Mc| ≤ βc|M| for each c. This allows us to capture settings where we wish to
represent different groups in different proportions, for example so that each group’s representation in
the matching is roughly proportional to its representation in the original graph.

We take a linear programming (LP) based approach to designing Algorithm 1. Below we state
Lp-Fair, which extends the standard matching polytope to include the proportionality constraints
described by 0 < α ≤ β < 1:

max
∑
e∈E

wexe (Lp-Fair)

s.t.
∑

e∈δ(v)

xe ≤ 1, ∀v ∈ U ∪ V (1a)

α
∑
e∈E

xe ≤
∑
e∈Ec

xe ≤ β
∑
e∈E

xe, ∀c ∈ [ℓ] (1b)

xe ≥ 0, ∀e ∈ E (1c)

Lemma 3.1. Lp-Fair relaxes OPT. That is, OPT ≤
∑

e∈E wexe, where x = (xe)e∈E is an optimal
solution to Lp-Fair.

As a first attempt to using Lp-Fair, observe that since G is bipartite, if x = (xe)e∈E is an
optimal solution to the LP, then we can write x as a convex combination of integral matchings. By
randomly sampling such a matching according to the coefficients of the convex combination, this yields
a randomized algorithm with expected value

∑
e∈E wexe ≥ OPT. Unfortunately, while this preserves

the fairness constraints in expectation due to (1b), there is no guarantee that any particular matching
we output will satisfy these constraints. In order for an algorithm to succeed with constant probability,
an ideal approach would be to match each edge e with probability xe while ensuring that the size of a
matching of a color class c is concentrated about

∑
e∈Ec

xe. For instance, if we had negative correlation
amongst the matching statuses of the edges of Ec, then this would be sufficient (see [Dubhashi and
Ranjan, 1996]). The GKPS dependent rounding scheme of [Gandhi et al., 2006] provides such a
guarantee for certain edge subsets of G. However, since the edges of Ec are adversarially chosen, it is
easy to construct an example where the GKPS rounding scheme induces positive correlation amongst
the matched statuses.

Due to the limitations of these approaches, we need to round our LP in a different way. Let us
suppose that we round x into a random matching M, where we denote Mc := M∩ Ec for a fixed
color class c ∈ [ℓ]. Roughly speaking, our goal is to ensure that the following properties simultaneously
hold, where δ > 0 is a fixed parameter to be specified in Theorem 4.3:
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1. For each e ∈ E, Pr[e ∈M] = xe/2.

2. With constant probability,

|Mc|
|M|

∈
[
(1− δ)E[|Mc|]

E[|M|]
, (1 + δ)

E[|Mc|]
E[|M|]

]
.

Property 1 and Lemma 3.1 then imply that

E[
∑
e∈M

we] =
∑
e∈E

wexe/2 ≥ OPT/2.

Moreover, since E[|Mc|] =
∑

e∈Ec
xe/2 and E[|M|] =

∑
e∈E xe/2, we can combine Property 2. with

(1b) to conclude that (1− δ)α|M| ≤ |Mc| ≤ (1 + δ)β|M|.
Our approach uses a randomized rounding tool known as a contention resolution scheme (CRS).

CRS’s were originally introduced by Chekuri et al. [2014] to solve certain constrained sub-modular
optimization problems. Motivated by the applications to prophet inequalities, they were later adapted
to the online setting by Feldman et al. [2021], where they are referred to as online contention reso-
lution schemes (OCRS’s). Since then, they have found many other applications, and have become a
fundamental tool in stochastic optimization. We continue this line of research and show that this tool
can be useful even for our problem which is offline and has no inherit stochasticity.

Our algorithm first has every v ∈ V independently draw a random vertex Fv ∈ N(v), where

Pr[Fv = u] = xu,v (2)

for each u ∈ N(v). (For convenience, we define Fv to be a null element ⊥ if no draw is made, where
P[Fv = ⊥] = 1 −

∑
u∈N(v) xu,v). If Fv = u, we say that v proposes to u and refer to Fv as a proposal

for u. At this point, we know that each vertex v ∈ V has made at most one proposal. However, a
fixed vertex u ∈ U may have received multiple proposals, and so we must resolve which proposal each
vertex u should take. This is precisely the purpose of the OCRS, and we use the explicit scheme of
Ezra et al. [2022]. For a fixed u ∈ U , the input required of the OCRS is the edge values (xu,v)v∈N(u),
together with the proposals (Fv)v∈N(u). Moreover, in the contention resolution framework, (Fv)v∈N(u)

must be independent. Under these conditions, the OCRS outputs at most one edge (u, v) with Fv = u,
while guaranteeing that for all v ∈ N(u)

Pr[(u, v) is output | Fv = u] = 1/2. (3)

Due to guarantee of (3), the OCRS is said to be 1/2-selectable in the literature. By concurrently
running a separate execution of this OCRS for each u ∈ U , the matching we output satisfies Property
1.

We still need the explain why our algorithm satisfies Property 2. It turns out our algorithm has
a very simple description. First, we order the vertices of V arbitrarily, say v1, . . . , vn. Then, when vt
is processed and proposes to u (i.e., Fvt = u), we draw an independent random bit Au,vt We match
(u, vt) provided u was not previously matched and Au,vt = 1. We note that in regards to verifying
Property 2, the specific Bernouli parameter of Au,vt is not important. We simply require that (Ae)e∈E
are drawn independently.

If we let M be the output of the algorithm, and Mc = Ec ∩M, then we can analyze the Doob
martingale of |Mc|. Here the Doob martingale is defined by revealing the partial matching after the
vertices v1, . . . , vt are processed. Due to the simplicity of our algorithm, we can bound the one-step
changes in the Doob martingale in a very precise way that is related to

∑
e∈Ec

xe. Note that the
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standard Azuma–Hoeffding martingale concentration inequality does not allow for good bounds due
to constant worst-case one-step changes (as we explain in Section 5.1 and an example in Appendix D)
leading to Θ(n) over the entire process from t=1 to t = n. We show that by controlling the variance
of this martingale, we can get stronger bounds via Freedman’s inequality. More precisely, we can
tighten the concentration on the random variable Mc by using one-step variance which can be much
smaller than the worse-case one-step changes since the events involving the bad cases occur with small
probability. The total variance can be precisely computed and is upper bounded by 10

∑
e∈Ec

xe which
is much smaller than Θ(n). The concentration helps us achieve almost fairness, i.e., |Mc| violates the
fairness constraints on each side by at most a δ-multiplicative factor for some small δ > 0. Finally,
when we only have β-sided fairness constraints i.e., α = 0, β < 1, we apply an LP perturbation trick to
recover a matching that satisfies the constraints exactly, meaning that without any violations with only
a 0 < ϵ < 1 multiplicative loss in the objective. However, it is important to note that our algorithm
still has a probabilistic guarantee: with a certain probability, the matching returned will not satisfy
the fairness constraints. At the expense of additional runtime, we can improve the success probability
to be arbitrarily close to 1 by repeatedly running our algorithm and taking the best solution which is
feasible.

4 Our Algorithm

We begin by formally describing our algorithm to find a matching for a bipartite graph G = (U, V,E)
with color classes ∪c∈[ℓ]Ec and α ≤ β ≤ 1. Note that our algorithm takes in a parameter 0 < ε < 1
which is only needed for the special case when α = 0.

For δ > 0, a random matching M ⊆ E is said to be δ-ProbablyFair with respect to 0≤α≤β≤1
if for any color class c, 2

Pr

[
(1− δ)α ≤ |Mc|

|M |
≤ (1 + δ)β

]
≥ 1− fc(δ,G). (4)

where fc(δ,G) is a term that depends on the tunable parameter δ and the input instance. This
definition allows us to violate the constraints by a small δ-multiplicative factor which can be adjusted
to attain a reasonable probability of success.

Algorithm 1 OCRS Rounding Algorithm

Input: G = (U, V,E) with color classes (Ec)c∈[ℓ], 0 ≤ α ≤ β ≤ 1, and 0 < ε < 1.
Output: subset of edges forming a matching M.
1: M← ∅
2: If α > 0, compute an optimal solution x = (xe)e∈E to Lp-Fair with 0 < α ≤ β ≤ 1. Otherwise,

compute an optimal solution x to Lp-Fair with β in (1b) replaced by β̃ = (1− ε)β.
3: Order the vertices of V as v1, . . . , vn arbitrarily.
4: Draw (Fvt)

n
t=1 as described in (2).

5: for t = 1, . . . , n with Fvt ̸= ⊥ do

6: Set u := Fvt , and au,vt := 1/2
1−(1/2)

∑
i<t xu,vi

.

7: Draw Au,vt ∼ Ber(au,vt) independently.
8: If Au,vt = 1 and u is currently unmatched, add (u, vt) to M
9: returnM.

Our main results are as follows:

2Taking δ = 1 satisfies the Equation (4) trivially
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Theorem 4.1. Algorithm 1 returns a matchingM that has an expected weight of at least 1
2OPT and

is δ-ProbablyFair with fc(δ,G) = 4 exp
(−δ2

∑
e∈Ec

xe

28

)
.

Remark 4.2. The violations dependent on δ in the fairness constraints are inversely exponential to
the failure probability fc(δ,G). This implies that achieving arbitrarily small violations δ ≈ 0 with a
high success probability requires stronger assumptions on the term

∑
e∈Ec

xe i.e., for input instances
with

∑
e∈Ec

xe = ω(1) we can ensure high success probability with δ ≈ 0.

We next state our improved guarantee for the special case when α = 0. Recall that in this setting,
we can ensure that we do not violate the β-fairness constraint.

Theorem 4.3. Given any 0 < ε < 1, Algorithm 1 returns a matching that satisfies the β-fairness

constraints with probability at least 1 − f(ϵ,G) where f(ϵ,G) = 2 exp
(
−ϵ2β

∑
e∈E xe

28

)
, and has an

expected weight of at least 1
2(1− ϵ)OPT.

In Theorem 4.3, the values (xe)e∈E represent the optimal fractional solution to Lp-Fair with
β̃ = β(1 − ϵ). Additionally, f(ϵ,G) denotes the probability that the algorithm fails to produce a
matching that satisfies the β-fairness constraints exactly i.e., with no violations.

Remark 4.4. The probability that our algorithm fails decreases exponentially as a function of ϵ and
β
∑

e∈E xe. Therefore, to attain a failure probability f(ϵ,G) ≈ 0 and the approximation factor close to
1/2, we require that β

∑
e∈E xe to be sufficiently large, say β

∑
e∈E xe ≥ C for some constant C, say

C ≥ 100.

Remark 4.5. For the instances where β
∑

e∈E xe ≤ C, we address these cases separately using a
brute force algorithm as described in Section 6.1. This involves enumerating all feasible matchings
that satisfy the fairness with respect to β and having size at most U2

L2
C

β(1−ϵ) where U = maxe∈E we and
L = mine∈E we.

For all non-degenerate instances, U
L is bounded by a constant. Hence, our algorithm runs in

polynomial time if the term U2

L2
C

(1−ϵ)β remains constant, given that U
L is bounded. However, in the

worst-case, where β = 1
ℓ , the running time will be exponential in ℓ.

5 Algorithm Analysis

Suppose that we are given an instance of proportional fair matching. We let x = (xe)e∈E denote an
optimal solution to Lp-Fair used by Algorithm 1. Note that if α = 0, then x is computed by replacing
β in (1b) with β̃ = (1− ε)β.

Recall that the vertices of V are processed in order v1, . . . , vn. Let us say that u ∈ U is safe at
time t, provided u is not matched to any of v1, . . . , vt−1. Observe that (u, vt) is matched if and only
if u is safe at time t, Fvt = u and Au,vt =1. Let Zu,vt be an indicator random variable for this event.
For convenience, we define F̃vt := u provided Fvt = u and Au,vt = 1. Otherwise, F̃vt = ⊥. Observe
then that

Pr[Zu,vt = 1] = Pr[F̃vt = u, u is safe at t] (5)

Let Z(vt) be an indicator random variable that an edge of Ec is matched to vertex vt where Z(vt) =∑
u∈N(vt)

ψc(u, vt)Zu,vt . Recall that M is the matching returned by our algorithm, therefore,

|Mc| =
∑
t≥1

∑
(u,vt)∈δ(vt)

ψc(u, vt)Zu,vt

7



Now, the instantiations of (F̃vi)
t
i=1 are sufficient to determine which edges (if any) are matched to

v1, . . . , vt. Thus, we shall work with Ht, the sigma-algebra generated by (F̃vi)
t
i=1, which intuitively

corresponds to the history of the algorithm’s execution after v1, . . . , vt are processed. We define H0 to
be the trivial sigma-algebra, where we do not condition on anything.

Fix a color class c, and let Mt := E[|Mc| | Ht] denote the expected number of edges from color
class c in our matching, conditional on Ht. Observe that M0 = E[|Mc|], and Mn is the actual
number of edges chosen from the color class c at the end of our algorithm. Since we expose strictly
more information in each round, i.e., formally, Ht−1 ⊆ Ht for each t ≥ 1, the sequence (Mt)

n
t=0 is a

martingale with respect to (Ht)
n
t=0. (This is often referred to as a Doob martingale).

We aim to understand the size of the matching produced by our algorithm as each vertex vt is
processed. More specifically, when vt is processed, our algorithm adds the edge (u, vt) to the current
matching if u is safe and F̃vt = u. Observe that Mt is a function of the current matching between U
and {v1, v2, . . . , vt}. Moreover, for any 1 ≤ t ≤ n,

Mt = E
[∑
k≥1

Z(vk) | Ht

]
. (6)

Our goal is to control the one step changes of our martingale, which will imply that Mn = |Mc| is
concentrated about M0 = E[|Mc|].

5.1 Warmup: Azuma-Hoeffding inequality

To apply concentration bounds like the Azuma–Hoeffding inequality, the martingale must be well-
behaved i.e., at any step 1 ≤ t ≤ n, the martingale cannot change dramatically. Thus, we need to
determine the quantities ct such that if ∆Mt := Mt −Mt−1 is the one-step change at step t, then
|∆Mt| ≤ ct.
Lemma 5.1. |∆Mt| = |Mt −Mt−1| ≤ 2 for all 1 ≤ t ≤ n.

Proof. By Lemma 5.6 we know that the one-step change |∆Mt| is given by

|Mt −Mt−1| = max
q∈N(vt)∪{⊥}

|E[Mn | Ht−1, F̃vt = q]− E[Mn | Ht−1]|

=

max
{

max
u∈N(vt)

|E[Mn | Ht−1, F̃vt = u]− E[Mn | Ht−1]|,

|E[Mn | Ht−1, F̃vt = ⊥]− E[Mn | Ht−1]|
}

≤ 2

The last inequality follows from Lemma B.1 and Lemma B.2.

Let consider the one-step change in ∆Mt when F̃vt is revealed. Since we can match at most one
edge at each time step, we may miss the opportunity to match at most two edges of a given color.
Therefore, in the worst case, we have that

∑
t |∆Mt| = Θ(n). For example, consider the star graph,

where a central vertex is connected to all other vertices. In each time step, if we reveal F̃vt , then
the change in the maximum matching will be at most 1, as we can only match or unmatch one edge
(we defer the full details of the example to Appendix D). To remedy this situation, we use a “second
order” inequality for analyzing a martingale called Freedman’s inequality:

Theorem 5.2 (Freedman [1975]). Suppose (Mt)t∈[n] is a martingale such that |∆Mt| ≤ Λ for any
1 ≤ t ≤ n, and

∑
t∈[n] Var[∆Mt | Ht−1] ≤ ν. Then, for all λ > 0,

Pr
[
|Mn −M0| ≤ λ

]
≤ 2 exp

( −λ2

2(ν + λΛ)

)
(7)
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Remark 5.3. The variance term Var(∆Mt | Ht−1) reduces to Var[∆Mt | Ht−1] = E[|∆Mt|2 | Ht−1]
since Var[∆Mt | Ht−1] := E[|∆Mt|2 | Ht−1] − E[∆Mt | Ht−1]

2 and E[∆Mt | Ht−1] = 0 due to the
martingale property.

Freedman’s inequality still depends on worst case one-step change Λ i.e., an upper bound on |∆Mt|.
However, its dependence on this parameter is less severe compared to the Azuma–Hoeffding inequality.
The key difference is that Freedman’s inequality depends on E[|∆Mt|2 | Ht−1], and so we get to average
over the randomness in F̃vt . This is much smaller than than the pessimistic bound of Lemma 5.1, as
even conditional on Ht−1, the probability that a worst-case change in |∆Mt| occurs is small.

5.2 Concentration of |Mc| via Freedman’s inequality

Freedman’s inequality allows us to use the expected one-step changes instead of the worst case changes
as shown in the Observation 5.1 below.

Observation 5.1. Var(∆Mt | Ht−1) ≤ 2E[|∆Mt| | Ht−1]

Proof. The variance of the one-step changes ∆Mt := Mt −Mt−1, given Ht−1, simplifies to Var(∆Mt |
Ht−1) = E

[
|∆Mt|2 | Ht−1

]
, because E[∆Mt | Ht−1] = 0 due to the martingale property. Recall that

Mn = |Mc|. By the definition of Mt and given that Ht = (Fvi)
t
i=q, we have:

Var(∆Mt | Ht−1) =
∑

u∈N(vt)∪{⊥}

Pr[F̃vt = q]
∣∣E[Mn | Ht−1, F̃vt = q

]
− E

[
Mn | Ht−1

]∣∣2
≤

∑
u∈N(vt)∪{⊥}

2 Pr[F̃vt = q]
∣∣E[Mn | Ht−1, F̃vt = q

]
− E

[
Mn | Ht−1

]∣∣
= 2E

[
|∆Mt| | Ht−1

]
The inequality above holds because the worst case change in the expected matching belonging to

color class c is at most 2 as given by Lemma 5.1.

We will prove two important facts (Lemma 5.4 and Lemma 5.5) about the one-step changes that
will be used in the rest of the analysis.

Lemma 5.4. For any step k > t, w ∈ N(vt) and w ̸= u, if F̃vt = u, i.e., vt proposes to u and
Au,vt = 1, then

Pr[w is safe at k | Ht−1, F̃vt = u]− Pr[w is safe at k | Ht−1] ≤ xw,vt .

Proof. Any vertex w ∈ U is safe at step k if F̃vr ̸= w for any 1 ≤ r ≤ k. The probability that
w ∈ N(vt) is safe conditional on Ht−1 can be either 0 or 1. Therefore, we can conclude that

Pr
[
w is safe at k |Ht−1, F̃vt = u

]
− Pr

[
w is safe at k | Ht−1

]
≤ Pr

[
∩t≤r≤k F̃vr ̸= w | Ht−1, F̃vt = u

]
− Pr

[
∩t≤r≤k F̃vr ̸= w | Ht−1

]
=
∏

t<r≤k

Pr
[
F̃vr ̸= w | Ht−1, F̃vt = u

]
−
∏

t≤r≤k

[
F̃vr ̸= w | Ht−1

]
≤
∏

t<r≤k

Pr
[
F̃vr ̸= w | Ht−1

]
(1− 1 + xw,vt)

≤ xw,vt

The second last inequality is due to the fact for any r ≥ t that Pr[F̃vr ̸= w | Ht−1] ≥ (1− xw,vr).
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Lemma 5.5. For any step k > t, and w ∈ N(vt) , if F̃vt = ⊥ i.e., vt is not matched to any vertex
incident on vt then

Pr[w is safe at k | Ht−1, F̃vt = ⊥]− Pr[w is safe at k | Ht−1] ≤ xw,vt

Proof. For each vertex w ∈ N(vt), if F̃vt = ⊥, a proof similar to that in Lemma 5.4 can be used. This
is because, in both cases where F̃vt = u or F̃vt = ⊥, we have:

Pr[F̃vt ̸= w | Ht−1, F̃vt = u] = Pr[F̃vt ̸= w | Ht−1, F̃vt = ⊥].

We now prove Lemma 5.6 which establishes a bound on the one-step changes in the random variable
Z(vk) at any step t where k ≥ t.

Lemma 5.6. For any step 1 ≤ t ≤ n and u ∈ N(vt),

•
∣∣∣E[Z(vt) |Ht−1, F̃vt =u

]
−E
[
Z(vt) |Ht−1

]∣∣∣ ≤ ψc(u, vt) +
∑

w∈N(vt)

ψc(w, vt)xw,vt

•
∣∣∣E[Z(vk) | Ht−1, F̃vt = u

]
− E

[
Z(vk) | Ht−1

]∣∣∣ ≤ ψc(u, vk)xu,vk +
∑

w∈Nū(vt)

ψc(w, vk)xw,vkxw,vt if k > t.

Proof. We begin by proving the first part of the lemma. Recall that Zw,vt is the indicator random
variable that the edge (w, vt) is selected in the matching M. From the definitions of Z(vt) and F̃vt ,
the probability Pr[F̃vt = w] = Pr[Aw,vt = 1, Fvt = w]. This implies that Pr[F̃vt = w | Ht−1] ≤ xw,vt .
Therefore we have

E
[
Z(vt) | Ht−1, F̃vt = u

]
− E

[
Z(vt) | Ht−1

]
=

∑
w∈N(vt)

ψc(w, vt)
(
E
[
Zw,vt | Ht−1, F̃vt = u

]
− E

[
Zw,vt | Ht−1

])
We apply the bounds established in Lemma B.1, specifically Equation (21) and Equation (22), and
substitute them into the equation above. That implies

E
[
Z(vt) | Ht−1, F̃vt = u

]
− E

[
Z(vt) | Ht−1

]
≤ ψc(u, vt)− ψc(u, vt)

xu,vt
2
−

∑
w∈Nũ(vt)

ψc(w, vt)xw,vt

Therefore, by applying triangle inequality we get the desired bound for the first part of the lemma as
follows: ∣∣∣[Z(vt) | Ht−1, F̃vt = u

]
− E

[
Z(vt) | Ht−1

]∣∣∣ ≤ ∑
w∈N(vt)

ψc(w, vt)xw,vt + ψc(u, vt).

For the second part, where k > t, we consider the bounds from Lemma B.1 in Equation (23) and
Equation (25) to obtain the following,∣∣∣E[Z(vk) | Ht−1, F̃vt = u]− E[Z(vk) | Ht−1]

∣∣∣ ≤ ψc(u, vk)xu,vk +
∑

w∈Nū(vt)

ψc(w, vk)xw,vkxw,vt

as desired. This concludes the proof of the lemma.
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Following this lemma, we can say that the one-step change in the size of the matching restricted
to color class c at any step t, conditioned on the event F̃vt = u, is given by:

E[Mn | Ht−1, F̃vt = u]− E[Mn | Ht−1] =
∑
k≥t

E[Z(vk) | Ht−1, F̃vt = u]− E[Z(vk) | Ht−1].

Therefore, by using the Lemma 5.6 we can derive the following result about the expected one-step
change in the size of the matching restricted to color class c when F̃vt = u. Notice that these one
step differences are in the worst case; therefore they can be as large as 2 as discussed in the previous
section. However, when we compute the one-step variances, we get to take an expectation over the
randomness of F̃vt as shown in Lemma 5.7 and Lemma 5.8. This allows us to bypass this worst-case
bound of 2.

Lemma 5.7. For any step 1 ≤ t ≤ n and u ∈ N(vt),∑
t∈[n]

∑
u∈N(vt)

xu,vt |∆Mt(u)| ≤ 4M0

where ∆Mt(u)=E
[
Mn | Ht−1, F̃vt = u

]
−E
[
Mn | Ht−1

]
.

Proof. Using Lemma B.3 and the fact
∑

t∈[n]
∑

u∈N(vt)
ψc(u, vt)xu,vt =

∑
(u,v)∈E ψc(u, v)xu,v = M0,

we can say that∑
t∈[n]

∑
u∈N(vt)

xu,vt
∣∣E[Mn | Ht−1, F̃vt = u]− E[Mn | Ht−1]

∣∣
≤M0 +

∑
t≥1

( ∑
u∈N(vt)

xu,vt
∑

w∈Nū(vt)

(
ψc(w, vt)xw,vt +

∑
k>t

ψc(w, vk)xw,vkxw,vt

)
+

∑
u∈N(vt)

xu,vtψc(u, vk)xu,vk

)
≤ 2M0 +

∑
(u,v)∈E

∑
w∈N(v)

ψc(w, v)xu,vxw,v +
∑
t≥1

∑
u∈N(vt)

xu,vt
∑

w∈Nū(vt)

∑
k>t

ψc(w, vk)xw,vkxw,vt (8)

≤ 2M0 +
∑

(w,v)∈Ec

xw,v

∑
u∈N(v)

xu,v +
∑

(u,v)∈E

xu,v
∑

w∈Nū(v)

∑
v′∈N(w)

ψc(w, v
′)xw,v′xw,v (9)

≤ 2M0 +
∑

(w,v)∈Ec

xw,v +
∑

(u,v)∈E

∑
w∈N(v)

∑
(w,v′)∈Ec∩δ(w)

xw,vxw,v′xu,v (10)

≤ 2M0 +M0 +
∑

(w,v′)∈Ec

xw,v′
∑

v∈N(w)

xw,v

∑
u∈N(v)

xu,v (11)

= 3M0 +
∑

(w,v′)∈Ec

xw,v′

( ∑
v∈N(w)

xw,v

( ∑
u∈N(v)

xu,v
))

≤ 3M0 +
∑

(w,v′)∈Ec

xw,v′ ≤ 4M0

Equation (8) is due the fact that∑
t≥1

∑
u∈N(vt)

xu,vtψc(u, vk)xu,vk ≤
∑

(u,v)∈E

xu,v
∑

v′∈N(u)

ψc(u, v
′)xu,v′

≤
∑

(u,v′)∈Ec

xu,v′
∑

v∈δ(u)

xu,v ≤
∑

(u,v′)∈Ec

xu,v′ = M0
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Note that each F̃vt = u indicates that the edge (u, vt) satisfies Fvt = u and Au,vt = 1. Therefore,
the summation

∑
t∈[n]

∑
u∈N(vt)

simplifies to a summation over the set of edges E as shown in Equa-
tion (9). We obtain Equation (10) due to the fact that

∑
s>t

∑
w∈Nū(vt)

aw,vs can be upper bounded
by summing over all edges of color class c. The inequality (11) is true because we change the order
of summations from

∑
(u,v)∈E

∑
w∈N(v)

∑
(w,v′)∈Ec∩δ(w) without changing the value of the summation.

The final inequality follows from the fact that
(∑

v∈N(w) xw,v

(∑
u∈N(v) xu,v

))
≤ 1 for any w ∈ U .

This concludes the proof.

We next consider the case when F̃vt = ⊥. Recall that this means Fvt = ⊥, or Fvt = u for some
u ∈ N(vt), yet Au,vt = 0.

Lemma 5.8. For any step 1 ≤ t ≤ n,∑
t∈[n]

|E
[
Mn | Ht−1, F̃vt = ⊥

]
−E
[
Mn | Ht−1

]
| ≤ 2M0.

Proof. In Lemma B.2 we showed that the worst case one-step change ∆Mt when F̃vt = ⊥ oc-
curs. Therefore, we directly apply Equation (28) to get

∑
u∈N(vt)\{u}

∑
k≥t ψc(u, vk)xu,vkxu,vt +∑

u∈N(vt)
ψc(u, vt)xu,vt

∑
t≥1

∣∣∣E[Mn | Ht−1, F̃vt = ⊥]− E[Mn | Ht−1]
∣∣∣

≤
∑
t≥1

∑
u∈δ(vt)

ψc(u, vt)xu,vt +
∑
t≥1

∑
k>t

∑
u∈N(vt)

ψc(u, vk)xu,vkxu,vt

= M0 +
∑
t∈[n]

∑
u∈N(vt)

xu,vt
∑

(u,vk)∈Ec:k>t

xu,vk (12)

Finally, we can say that,∑
t∈[n]

∑
u∈N(vt)

xu,vt
∑

(u,vk)∈Ec:k>t

xu,vk ≤
∑
t∈[n]

∑
u∈N(vt)

xu,vt
∑

v′:(u,v′)∈Ec

xu,v′

≤
∑

(u,v)∈E

xu,v
∑

(u,v′)∈Ec∩δ(u)

xu,v′

=
∑

(u,v′)∈Ec

xu,v′
∑

v∈N(u)

xu,v

≤
∑

(u,v′)∈Ec

xu,v′ = M0. (13)

Therefore, we get the desired bound by combining Equation (12) and Equation (13).

Therefore, by combining Lemma 5.7 and Lemma 5.8, we can easily derive a bound on the sum of
one-step variances i.e.,

∑
t∈[n] Var(∆Mt | Ht−1) used in the Freedman’s inequality. Formally, we can

prove the following.

Lemma 5.9.
∑

t∈[n] Var(∆Mt | Ht−1) ≤ 12M0 where Var(∆Mt | Ht−1) is the variance in the one-step
change of Mn at time t and M0 = E[|Mc|].
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Proof. Letting x(t) =
∑

e∈δ(vt) xe, we have the following.

E[|∆Mt| | Ht−1] =
∑

u∈F̃vt∪{⊥}

Pr[F̃vt = u]
∣∣∣E[Mn | Ht−1, F̃vt = u]− E[Mn | Ht−1]

∣∣∣ (14)

Inequality (14) is by definition and the fact that the random variable F̃vt is independent of Ht−1.
The support of F̃vt comprises of mainly two types of events (i) an edge (u, vt) ∈ δ(vt) has been both
selected (Fvt = u) and survived Au,vt = 1, and (ii) no edge gets sampled at time t i.e., Fvt = F̃vr = ⊥.
We let F̃vt = u represent the event that an edge (u, vt) is both selected i.e., Fvt = u and Fvt ̸= w
for any w ∈ Nū(vt) and Fvt = ⊥ represent the event that none of edges were selected. Since E[Mn |
Ht−1, F̃vt = u]−E[Mn | Ht−1] and E[Mn | Ht−1, F̃vt = ⊥]−E[Mn | Ht−1] represent the one-step change
in Mn (the expected matching size restricted to color class c) when F̃vt = u and F̃vt = ⊥, respectively.
By the definition of the random variable F̃vt we have Pr[F̃vt = u] = xu,vt and Pr[F̃vt = ⊥] = (1−x(t)),
therefore

E[|∆Mt| | Ht−1]

=
∑

u∈N(vt)

xu,vt
∣∣E[Mn | Ht−1, F̃vt = u]− E[Mn | Ht−1]

∣∣+
(1− x(t))|E[Mn | Ht−1, F̃vt = ⊥]− E[Mn | Ht−1]|. (15)

By summing Equation (15) over all time steps t ∈ [n], we obtain the following after applying
Lemma 5.7, and Lemma 5.8. ∑

t∈[n]

E[|∆Mt| | Ht−1] ≤ 4M0 + 2M0 (16)

The last inequality follows from Lemma 5.8 and Lemma 5.7. Finally we can conclude that
∑

t∈[n] Vt ≤
12M0 by using Observation 5.1.

Therefore, by applying the Freedman’s inequality (i.e., Theorem 5.2) we get the desired concen-
tration for the size of matching from color class c.

Theorem 5.10. For any color class c, Algorithm 1 returns a matchingMc =M∩Ec that is sharply
concentrated around its expected value M0 = E[|Mc|]. Specifically, for any δ > 0, we have that:

Pr
[∣∣|Mc| −M0

∣∣ ≥ δM0

]
≤ 2 exp

(
−
δ2
∑

e∈Ec
xe

28

)
Proof. We have Λ = maxt ∆Mt ≤ 2. Applying Freedman’s inequality from Theorem 5.2 to the
martingale (Mt)t∈[n], where Mn := |Mc| represents the random variable denoting the number of edges
of color c selected by our algorithm in the returned matching, we obtain:

Pr[|M0 −Mn| ≥ λ] ≤ 2 exp
( −λ2

2(ν + λ(2))

)
≤ 2 exp

( −λ2

2(12M0 + 2λ)

)
.

By taking λ = δM0 we get :

Pr[|M0 −Mn| ≥ δM0] ≤ 2 exp
( −δ2M2

0

24M0 + 4δM0

)
≤ 2 exp

(
− δ2M0

28

)
as desired.
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This concludes that Property 2 described in Section 3 can be satisfied. Finally combining Prop-
erty 2 together with the fairness constraints in (1b), we can conclude the following lemma.

Lemma 5.11. For any c ∈ [ℓ], and δ > 0, Algorithm 1 returns a matching M that satisfies the
following:

Pr

[
(1− δ)α ≤ |Mc|

|M|
≤ (1 + δ)β

]
≥ 1− 4 exp

(
−
δ2
∑

e∈Ec
xe

28

)

Proof. From Theorem 5.10 we know that for any color class c the matching size |Mc| is concentrated
sharply around the mean. Therefore, we have the following,

Pr

[
|Mc| ≤

(1− δ)
2

α
∑
e∈E

xe

]
≤ Pr

[
|Mc| ≤

(1− δ)
2

∑
e∈Ec

xe

]
≤ exp

(
− δ2E[|Mc|]

28

)

A similar bound holds for the random variable |M| which is given by

Pr
[
(1− δ)E[|M|] ≤ |M| ≤ (1 + δ)E[|M|]

]
≥ 1− 2 exp

(
− δ2E[|M|]

28

)

Therefore, we have the following, for any δ1, δ2 ≥ 0 such that 1−δ2
1+δ2

≥ 1,

Pr

[(
|Mc| ≥

(1− δ1)
2

α
∑
e∈E

xe
)
∩
(
|M| ≤ (1 + δ2)

2

∑
e∈E

xe
)]
≥ 1− exp

(
−δ2

∑
e∈E xe

28

)
−

exp

(
−δ2

∑
e∈Ec

xe

28

)

Pr

[
|Mc|
|M|

≥ (1− δ1)
(1 + δ2)

α
)]
≥ 1− 2 exp

(
−δ2

∑
e∈Ec

xe

28

)

Pr

[
|Mc|
|M|

≥ (1− δ)α
]
≥ 1− 2 exp

(
−δ2

∑
e∈Ec

xe

28

)
Similarly, we know that

Pr

[
|Mc| ≤

(1 + δ)

2
β
∑
e∈E

xe

]
≥ Pr

[
|Mc| ≤

(1 + δ)

2

∑
e∈Ec

xe

]
≥ 1− exp

(
−δ2

∑
e∈Ec

xe

28

)

Moreover, we know that for any δ1, δ2 > 0 such that 1+δ1
1−δ2

≤ 1 we have:

Pr

[(
|Mc| ≤

(1 + δ1)

2
β
∑
e∈E

xe

)
∩
(
|M| ≥ (1− δ2)

2

∑
e∈E

xe

)]
≥ 1− exp

(
−δ2

∑
e∈E xe

28

)
−

exp

(
−δ2

∑
e∈Ec

xe

28

)

Pr

[
|Mc|
|M|

≤ (1 + δ1)

2
· 2

(1− δ2)
β

]
≥ 1− 2 exp

(
−δ2

∑
e∈Ec

xe

28

)

Pr

[
|Mc|
|M|

≤ (1 + δ)β

]
≥ 1− 2 exp

(
−δ2

∑
e∈Ec

xe

28

)
.
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Therefore, combining the two-sided fairness bounds we get the following, for any δ > 0,

Pr

[
(1− δ)α ≤ |Mc|

|M|
≤ (1 + δ)β

]
≥ 1− fc(δ,G)

where fc(δ,G) = 4 exp
(−δ2

∑
e∈Ec

xe

28

)
.

Lemma 5.11 proves that Algorithm 1 returns a δ-ProbablyFair matching. This lemma, along
with the edge selectability guarantees of the OCRS rounding algorithm as stated in Property 1 com-
pletes the proof of Theorem 4.1.

6 Exact fairness for β-fairness constraints in Bipartite Graphs

In the previous section we showed that our algorithm provides a 1/2-approximation of the objective,
provided we violate the two-sided fairness constraints by multiplicative factors dependent on δ. Sup-
pose that α= 0 and only β imposes the fairness constraint, we can argue that by using a simple LP
perturbation trick, we can remove the δ-violations and make it an exact guarantee while still attaining
an asymptotic 1/2-approximation of the objective. More precisely, we satisfy the β-sided fairness
constraint exactly. We are also able to provide a better bound on our failure probability. Previously,
this was fc(δ,G), and it depended on

∑
e∈Ec

xe. We improve this to a new, smaller failure probability
f(ϵ,G), which now only depends on β

∑
e∈E xe and a tunable parameter ϵ. This makes our algorithm

more robust to the structure of the input instance.

If α = 0, we modify our algorithm slightly. We begin by solving a perturbed LP where β in
Lp-Fair is replaced by β(1−ϵ) where 0 < ϵ < 1. The perturbed LP requires that any feasible solution
must satisfy a stronger β-fairness constraint, which results in a slightly weaker solution to our problem
(see Lemma 6.1). Let x denote the optimal solution to the perturbed LP i.e., Lp-Fair with β̃. Since
our algorithm still executes an OCRS on each u ∈ U concurrently, Equation (3) ensures that the
matching M has expected weight

∑
e∈E wexe/2. We now relate

∑
e∈E wexe to the optimal solution

to Lp-Fair when the fairness constraint is β. This will allow us to lower bound the expected weight
of our matching in terms of OPT in Corollary 6.2. (Recall that OPT is the weight of the optimal
matching in the original problem with fairness constraint β.)

Lemma 6.1. For any 0 < ϵ < 1, the optimal LP solution to Lp-Fair with β̃ = (1 − ϵ)β is at least∑
e∈E wexe ≥ (1− ϵ)

∑
e∈E weye, where y = (ye)e∈E is an optimal LP solution to Lp-Fair with β.

Proof. Any feasible solution to Lp-Fair with α = 0 and β(1− ϵ) < 1 is also a feasible solution when
α = 0 and β < 1. Let x = (xe)e∈E and y := (ye)e∈E are optimal fractional solutions to Lp-Fair with
β̃ = β(1− ϵ) and β̃ = β respectively. Therefore,∑

e∈E
wexe ≥ (1− ϵ)

∑
e∈E

weye. (17)

Corollary 6.2. Algorithm 1 returns a matchingM with an expected weight of at least 1
2(1− ϵ)OPT.

We next argue that the matching M we output satisfies the β-fairness constraints exactly with

a probability of at least 1 − f(ϵ,G) where f(ϵ,G) = 2 exp
(
− ϵ2β

∑
e∈E xe

28

)
. Note that the failure

probability of our algorithm now only depends on the parameter ϵ and
∑

e∈E xe (see Lemma 6.3). It
is also reduced by a factor of 2, since we can use a one-sided version of Freedman’s inequality when
α = 0 and β > 0. Here,

∑
e∈E xe refers to the size of optimal fractional matching of Lp-Fair with

β̃ = β(1− ϵ).
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Lemma 6.3. Given an optimal solution x to Lp-Fair with β̃ = (1 − ϵ)β, then we can recover a
solution that satisfies the constraints exactly i.e., no violations in β-fairness constraints. Formally,
we can say that for any color c, and 0 < ϵ < 1, the size of the matching restricted to color class c is
at most β|M| with high probability,

Pr

[
|Mc|
|M|

≤ β
]
≥ 1− 2 exp

(−ϵ2β∑e∈E xe

28

)
.

Proof. Recall that x denotes the optimal solution to Lp-Fair with β̃ = (1−ϵ)β andM is the matching
returned after the rounding x by Algorithm 1. Therefore we know that

E[|Mc|] ≤
∑
e∈Ec

xe ≤ β̃
∑
e∈E

xe = (1− ϵ)β
∑
e∈E

xe.

Using Lemma C.2, we can say that

Pr

[
|Mc| ≥ (1 + δ1)(1− ϵ)β

∑
e∈E

xe

]
≤ exp

(
−
β̃δ21

∑
e∈E xe

28

)
.

Additionally, we have that |M| ≤ (1 − δ2)
∑

e∈E xe with probability exp
(−δ22

∑
e∈E xe

2

)
which follows

from Chernoff-like bounds of [Panconesi and Srinivasan, 1997] and the facts E[Zu,v] ≤ Pr[Fv = u] =
xu,v for any e = (u, v) ∈ E. Therefore, we have the desired exact fairness as follows,

Pr

[
|Mc|
|M|

≥ (1− ϵ)(1 + δ1)

(1− δ2)
β

]
≤ 2 exp

(
− δ21(1− ϵ)

28
β
∑
e∈E

xe

)

We know that for any ϵ ≥ δ1+δ2
1+δ1

, the term (1−ϵ)(1+δ1)
(1−δ2)

≤ 1 implying that

Pr

[
|Mc|
|M|

≤ β
]
≥ 1− 2 exp

(
− δ21

28(1− ϵ)
β
∑
e∈E

xe

)
≥ 1− 2 exp

(
− ϵ2 β

28

∑
e∈E

xe

)

The last inequality assumes δ1 ≥ (1− ϵ)ϵ.

Therefore we can conclude that the probability with which our algorithm fails to satisfy β-fairness
constraints is now tightened from fc(δ,G) which depends on

∑
e∈Ec

xe of individual color classes, to a
global quantity β

∑
e∈E xe in f(ϵ,G). This concludes the proof of Theorem 4.3.

6.1 Brute Force Algorithm for Small Instances

Given an instance of ProportionallyFairMatching, recall that the performance of Algorithm 1
improves the larger

∑
e∈E βxe is, where x = (xe)e∈E is an optimal solution to Lp-Fair with β̃ =

(1− ε)β.

We now handle the case where
∑

e∈E βxe ≤ C by running a simple brute-force algorithm. In order
to see how to do this, let y = (ye)e∈E be an optimal solution to Lp-Fair with β. (We don’t actually
use y in our algorithm, it is just for the analysis). Define L = mine∈E we and U = maxe∈E we. Then,

U
∑
e∈E

xe ≥
∑
e∈E

wexe ≥ (1− ε)
∑
e∈E

weye ≥ (1− ε)L
∑
e∈E

ye,
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where the second inequality from the left uses Lemma 6.1, and the rest use the trivial upper and lower
bounds of U and L. We thus have that

U

L(1− ε)
∑
e∈E

xe ≥
∑
e∈E

ye. (18)

Thus, if
∑

e∈E βxe ≤ C, then
∑

e∈E ye ≤
U

L(1−ε)
C
β via (18). Let us now suppose that MOPT is a

maximum weighted matching with respect to fairness constraint β. Then, L|MOPT| ≤
∑

e∈MOPT
we ≤∑

e∈E weye ≤ U
∑

e∈E ye ≤ U
U
βL

C
1−ε , where the last inequality uses the assumed inequality

∑
e∈E ye ≤

U
βL

C
1−ε . It follows that

|MOPT | ≤
U2

L2

C

β(1− ε)
. (19)

Thus, if we run a brute force algorithm where we check matchings which are fair with respect to β,
and which contain at most U2

L2
C

β(1−ε) edges, then (19) ensures that we’ll return an optimal matching.

7 Conclusion and Future work

In contrast to our current algorithm which processes vertices in a fixed or arbitrary order, Random
Order Contention Resolution Scheme (RCRS) from Adamczyk and W lodarczyk [2018] provides better
selection guarantees where vertices are processed in a random order. More precisely, RCRS achieves
an approximation ratio of 1 − 1

e . However, it appears to be much more challenging to compute the
one-step variance of the martingale at each time t, making it difficult to derive a useful bound for the
sum of variances

∑
t∈[n] Var(|∆Mt| | Ht−1).

Thus, it remains an interesting open problem to determine if we can overcome this obstacle to
improve the approximation factor from 1/2 to 1 − 1

e . Moreover, adapting the analysis to general
graphs is also an interesting future direction.
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A Example demonstrating that |∆Mt| ≥ 2− ϵ in the Worst Case

Observation A.1. For any t ≥ 1 and ϵ > 0, the one-step change in the martingale can be as large as
2− ϵ, i.e., ∆Mt ≥ 2− ϵ.

Proof. We establish this by constructing an example where the one-step change in the martingale is
precisely 2− ϵ. Consider the Example A.1 where, at time t = 1, vertex vt proposes to vertex u. In this
case, the one-step change in the matching from the blue color class, Mblue, given Ht−1, is 2− ϵ.

Example A.1. Consider an instance of proportional matching in an edge-colored graph G = (U, V,E),
where E = Ered∪Eblue. Suppose the optimal fractional solution has xu,vk = xw,vt = 1−ϵ and xu,vt = ϵ.

vt, F̃vt = u

vk

u

w

ϵ

1− ϵ1− ϵ

Figure 1: At t = 1 when vt proposes to u instead of w and F̃vt = u, then the expected change in the
matching restricted to blue edges, Mblue, is bounded by 2(1− ϵ).
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B Omitted proofs from Section 5

Lemma B.1. For any t ≥ 1 when vertex vt is processed, the worse case one-step change given F̃vt = u
is as follows:

max
u∈N(vt)

|E[Mn | Ht−1, F̃vt = u]− E[Mn | Ht−1]| ≤ 2

Proof. Recall that Zw,vt denotes the indicator random variable that the edge (w, vt) is selected in the
matchingM. Given the definition of Mt in Equation (6) and conditioned on F̃vt = u for any u ∈ N(vt),
the one-step change is given by:

E
[∑
k≥1

Z(vk) | Ht−1, F̃vt = u
]
− E

[∑
k≥1

Z(vk) | Ht−1

]
=
∑
k≥t

E
[
Z(vk) | Ht−1, F̃vt = u

]
− E

[
Z(vk) | Ht−1

]
=
∑
k≥t

∑
w∈N(vk)

ψc(w, vk)
(
E
[
Zw,vk | Ht−1, F̃vt = u

]
− E

[
Zw,vk | Ht−1

])
(20)

Notice that for any (w, vk) with w /∈ N(vt) are not affected by the conditional on F̃vt = u i.e.,

E
[
Zw,vk | Ht−1, F̃vt = u

]
= E

[
Zw,vk | Ht−1

]
.

Therefore, we need to bound the term E[Zw,vk | Ht−1, F̃vt = u] − E[Zw,vk | Ht−1] for any k ≥ t and
w ∈ N(vt) in order to obtain the desired bound stated in the lemma. Additionally, these edges can be
classified into one of the following cases.

Case 1: k = t, w = u, and F̃vt = u

E
[
Zu,vt | Ht−1, F̃vt = u

]
−E
[
Zu,vt | Ht−1

]
≤ Pr

[
u is safe at t | Ht−1

]
(1−Pr[F̃vt = u | Ht−1]) ≤ 1−xu,vt

2
.

(21)
The last inequality is from Equation (3).

Case 2: k = t, w ̸= u, and F̃vt = u

E
[
Zw,vt | Ht−1, F̃vt = u

]
− E

[
Zw,vt | Ht−1

]
≥ 0− xw,vt Pr

[
w is safe at t | Ht−1

]
≥ −xw,vt (22)

Case 3: k > t, w = u, and F̃vt = u

E
[
Zu,vk | Ht−1, F̃vt = u

]
− E

[
Zu,vk | Ht−1

]
= 0− xu,vk Pr

[
u is safe at t | Ht−1

]
≥ −xu,vk (23)

Case 4: k > t, w ̸= u, and F̃vt = u

E
[
Zw,vk | Ht−1, F̃vt = u

]
− E

[
Zw,vk | Ht−1

]
(24)

≤ xw,vk

(
Pr
[
w is safe at k | Ht−1, F̃vt = u

]
− Pr

[
w is safe at k | Ht−1

])
≤ xw,vkxw,vt (25)

21



Inequality (25) follows from Lemma 5.4. Hence, substituting the bounds from the four cases into
Equation (20) we have:

E

∑
k≥1

Z(vk) | Ht−1, F̃vt = u

− E

∑
k≥1

Z(vk) | Ht−1


≤ ψc(u, vt)

(
1− xu,vt

2

)
−

∑
w∈N(vt)\{u}

ψc(w, vt)xw,vt−∑
k>t

ψc(u, vk)xu,vk +
∑
k>t

∑
w∈N(vt)\{u}

ψc(w, vk)xw,vkxw,vt

≤ ψc(u, vt)
(
1− xu,vt

2

)
−

∑
w∈Nũ(vt)

ψc(w, vt)xw,vt −
∑
k>t

ψc(u, vk)xu,vk+

∑
k>t

∑
w∈Nũ(vt)\{u}

ψc(w, vk)xw,vkxw,vt

≤ 1− xu,vt
2
−

∑
w∈Nũ(vt)

ψc(w, vt)xw,vt −
∑
k>t

ψc(u, vk)xu,vk + (1− xu,vt)

≤ 2.

The second-to-last inequality follows from the fact:∑
k>t

∑
w∈N(vt)\{u}

ψc(w, vk)xw,vkxw,vt =
∑

w∈N(vt)\{u}

xw,vt

∑
k>t

ψc(w, vk)xw,vk ≤
∑

w∈N(vt)\{u}

xw,vt ≤ 1− xu,vt .

The final inequality is due to:∑
w∈N(vt)

ψc(w, vt)xw,vt +
1

2
xu,vt +

∑
k>t

ψc(u, vk)xu,vk ≤ 2

and this concludes the proof.

Lemma B.2. For any t ≥ 1 when vertex vt is processed, the worse case one-step change given F̃vt = ⊥
is as follows:

E[Mn | Ht−1, F̃vt = ⊥]− E[Mn | Ht−1] ≤ 2

Proof. Following the definitions of Mt in Equation (6) we have:

E[Mn | Ht−1, F̃vt = ⊥]− E[Mn | Ht−1] =
∑
k≥1

E[Z(vk) | Ht−1, F̃vt = ⊥]− E[Z(vk) | Ht−1]

=
∑
k≥t

∑
u∈N(vt)

ψc(u, vk)
(
E[Zu,vk | Ht−1, F̃vt = ⊥]− E[Zu,vk | Ht−1]

)
(26)

Notice that for any (u, vk) with u /∈ N(vt) are not affected by the conditional on F̃vt = ⊥ i.e.,

E
[
Zu,vk | Ht−1, F̃vt = ⊥

]
= E

[
Zu,vk | Ht−1

]
.

Therefore, we need to bound the term E[Zu,vk | Ht−1, F̃vt = ⊥] − E[Zu,vk | Ht−1] for any k ≥ t and
u ∈ N(vt) in order to obtain the desired bound stated in the lemma. Additionally, these edges can be
classified into one of two cases.
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Case 1: k = t, u ∈ N(vt) and F̃vt = ⊥
E
[
Zu,vt | Ht−1, F̃vt = ⊥

]
− E

[
Zu,vt | Ht−1

]
= 0− Pr

[
u is safe at t | Ht−1

]
Pr[F̃vt = u]

≥ −xu,vt

Case 2: k > t, u ∈ N(vt), and F̃vt = ⊥
E
[
Zu,vk | Ht−1, F̃vt = ⊥

]
− E

[
Zu,vk | Ht−1

]
= Pr[F̃vk = u]

(
Pr[u is safe at k | Ht−1, F̃vt = ⊥]− Pr[u is safe at k | Ht−1]

)
≤ xu,vkxu,vt . (27)

Inequality (27) follows from Lemma 5.5. Hence, substituting the bounds from the four cases into
Equation (26) we have:

E[Mn | Ht−1, F̃vt = ⊥]− E[Mn | Ht−1] ≤
∑
k≥t

∑
u∈N(vt)\{u}

ψc(u, vk)xu,vkxu,vt +
∑

u∈N(vt)

ψc(u, vt)xu,vt

≤
∑

u∈N(vt)\{u}

∑
k≥t

ψc(u, vk)xu,vkxu,vt +
∑

u∈N(vt)

ψc(u, vt)xu,vt

(28)

≤ 1 + 1 = 2.

The last inequality is due to∑
u∈N(vt)\{u}

∑
k≥t

ψc(u, vk)xu,vkxu,vt =
∑

u∈N(vt)\{u}

xu,vt
∑
k≥t

ψc(u, vk)xu,vk ≤
∑

u∈N(vt)\{u}

xu,vt ≤ 1.

This completes the proof.

Lemma B.3. Suppose that F̃vt = u represent the event that vt proposed to u and Au,vt = 1 in step t,
then ∑

u∈N(vt)

xu,vt

∣∣∣E[Mn | Ht−1, F̃vt = u]− E[Mn | Ht−1]
∣∣∣

≤
∑

u∈N(vt)

xu,vt

(
ψc(u, vt) +

∑
w∈N(vt)

(
aw,vtxw,vt +

∑
k>t

(ψc(u, vk)xu,vk + aw,vkxw,vkxw,vt)
))

Proof. By applying Lemma 5.6 we have the following,∑
u∈N(vt)

xu,vt

∣∣∣E[Mn | Ht−1, F̃vt = u]− E[Mn | Ht−1]
∣∣∣

=
∑

u∈N(vt)

xu,vt

∣∣∣E[∑
k≥t

Z(vk) | Ht−1, F̃vt = u
]
− E

[∑
k≥t

Z(vk) | Ht−1

]∣∣∣
≤

∑
u∈N(vt)

xu,vt
∑
k≥t

∣∣∣E[Z(vk) | Ht−1, F̃vt = u
]
− E

[
Z(vk) | Ht−1

]∣∣∣
≤

∑
u∈N(vt)

xu,vt
(
ψc(u, vt) +

∑
w∈N(vt)

ψc(w, vt)xw,vt

)
+

∑
u∈N(vt)

xu,vt
∑
k>t

(
ψc(u, vk)xu,vk +

∑
w∈Nū(vt)

ψc(w, vk)xw,vkxw,vt

)
(29)

=
∑

u∈N(vt)

xu,vt
(
ψc(u, vt) +

∑
w∈N(vt)

ψc(w, vt)xw,vt +
∑
k>t

(ψc(u, vk)xu,vk +
∑

w∈N(vt)

ψc(w, vk)xw,vkxw,vt)
)

(30)
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Equation (29) follows directly from Lemma 5.6. Thus, we obtain the desired bound.

C Omitted proofs from Section 6

In order to attain the desired one-sided concentration inequality as stated in Lemma 6.3, we will a
variant of Freedman’s inequality for supermartingales. This inequality is the same as Theorem 5.2,
except that since it only controls the upper tail of the random variable, the probability term is reduced
by a factor of 2.

Theorem C.1 ([Bohman and Keevash, 2019]). Suppose (Mt)t∈[n] is a supermartingale such that
|∆Mt| ≤ Λ for any 1 ≤ t ≤ n, and

∑
t∈[n] E[∆M2

t | Ht−1] ≤ ν. Then, for all λ > 0,

Pr
[
Mn ≥M0 + λ

]
≤ exp

(
−λ2

2(ν + λΛ)

)

Lemma C.2. Suppose that (Mt)t≥0 is the Doob martingale defined in Section 5 and M0 ≤ µH i.e.,
we know an upper bound on the expected size of the matching from color class c, then

Pr[Mn ≥ (1 + δ)µH ] ≤ exp

(
−δ2µH

28

)

Proof. Consider the following sequence of random variables (St)t≥0 where St := Mt − β̃
2

∑
e∈E xe.

Clearly, (St)t≥0 is a supermartingale since (Mt)t≥0 is a martingale and M0 ≤ β̃
2

∑
e∈E xe. The latter

is true because,

M0 = E[|Mc|] =
∑
e∈Ec

xe/2 ≤ β̃
∑
e∈E

xe/2 = µH

This implies the following upper tail bound on Sn:

Pr[Sn ≥ λ] ≤ Pr[Sn ≥ S0 + λ] ≤ exp

(
− λ2

2
(∑

t∈[n] E(|∆St|2 | Ht−1) + λ
))

Pr[Mn ≥ λ+ β̃
∑
e∈E

xe/2] ≤ exp

(
− λ2

2
(∑

t∈[n] E(2|∆Mt| | Ht−1) + λ
)).

The last inequality is due to the fact that |∆St| = |∆Mt|. Therefore, we have that

Pr[Mn ≥ β̃
∑
e∈E

xe/2 + λ] ≤

(
− λ2

2
(
12M0 + 2λ

)).
By substituting λ = δ β̃2

∑
e∈E xe ≥ δM0,

Pr[Mn ≥ (1 + δ)µH ] ≤ exp

(
− λ2δ

2
(
10λ+ 2λδ

))

= exp
(
− λδ

28

)
= exp

(
− δ2µH

28

)
This concludes the proof.
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D Construction of an instance of proportional fair matching where
Azuma-Hoeffding inequality fails to achieve concentration on |Mc|

Theorem D.1 (Azuma–Hoeffding inequality). Suppose that (Mt)t≥0 is a martingale and |Mt −
Mt−1| ≤ ct for any 1 ≤ t ≤ n. Then for any δ > 0

Pr[|Mn −M0| ≥ δ] ≤ 2 exp

(
−δ2

2
∑n

t=1 c
2
t

)
.

Example D.1. Consider an edge-colored star graph G with 2 colors and n + 2 vertices. Let u be the
central vertex, and let the remaining vertices be v1, v2, . . . , vn+1. The edges partitions are as follows:
Eblue = {(u, vt) | t = 1, . . . , n} and Ered = {(u, vn+1)}. An optimal solution to the linear program
(LP) Lp-Fair is given by xu,vt = ϵ

n for 1 ≤ t ≤ n and xu,vn+1 = 1− ϵ.

Let us fix the color class red andMred denoteM∩Ered whereM is the matching returned by our
algorithm. Let the martingale (Mt)t≥0 correspond to the matching restricted to color class c. Then
we have the following observation.

Observation D.1. There exists an instance of proportional fair matching where the worst-case sum∑
t≥1 ct can grow as large as Θ(n), where n represents the number of vertices and ct are positive

constants such that |Mt −Mt−1| ≤ ct.

Proof. For each 1 ≤ t ≤ n, when vt is processed we know that the one-step change in theMc is given
by |∆Mt| = 1− ϵ. Therefore we have

∑
t∈[n] c

2
t ≤

∑
t∈[n] ct = n(1− ϵ).

Therefore, we can conclude that Azuma’s inequality may fail to provide concentration for |Mc|
since E[|Mc|] ≤ nc, where nc represents the total number of vertices with at least one incident edge
from color class c.

v1

v2
···
vk

vk+1

u

ϵ/k

ϵ/k

ϵ/k

1− ϵ

Figure 2: In the edge-colored graph G, we have |∆Mt| = 1 − ϵ at each time t. Therefore, the sum∑
t∈[n] |∆Mt| is Θ(n).
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