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Abstract

Within the context of stochastic probing with commitment, we consider the online stochas-
tic matching problem; that is, the one sided online bipartite matching problem where edges
adjacent to an online node must be probed to determine if they exist, based on known edge
probabilities. If a probed edge exists, it must be used in the matching (if possible). We study
this problem in the generality of a patience (or timeout) constraint which limits the number of
probes that can be made to edges adjacent to an online node. Arbitrary patience constraints
result in modelling and computational efficiency issues that are not encountered in the special
cases of unit patience and full (i.e., unlimited) patience. The stochastic matching problem leads
to a variety of settings. Our main contribution is to provide a new LP relaxation and a unified
approach for establishing new and improved competitive bounds in three different input model
settings (namely, adversarial, random order, and known i.i.d.). In all these settings, the algo-
rithm does not have any control on the ordering of the online nodes. We establish competitive
bounds in these settings, all of which generalize the standard non-stochastic setting when edges
do not need to be probed (i.e., exist with certainty). All of our results hold for arbitrary edge
probabilities and patience constraints. Specifically, we establish the following competitive ratio
results:

1. A 1−1/e ratio when the stochastic graph is known, offline vertices are weighted and online
arrivals are adversarial.

2. A 1−1/e ratio when the stochastic graph is known, edges are weighted, and online arrivals
are given in random order (i.e., in ROM, the random order model).

3. A 1− 1/e ratio when online arrivals are drawn i.i.d. from a known stochastic type graph
and edges are weighted.

4. A (tight) 1/e ratio when the stochastic graph is unknown, edges are weighted and online
arrivals are given in random order.

We note that while results for stochastic graphs in the ROM setting generalize the corre-
sponding results for the classical ROM bipartite matching setting, it is not clear that a result
for a known stochastic graph in the ROM setting implies the same result for the stochastic
unknown and known i.i.d. settings.

In deriving our results, we clarify and expand upon previous offline benchmarks, relative to
which one defines an appropriate definition of the competitive ratio. In particular, we introduce
a new LP relaxation which upper bounds the performance of “an ideal benchmark”.
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1 Introduction

Stochastic probing problems are part of the larger area of decision making under uncertainty and
more specifically, stochastic optimization. Unlike more standard forms of stochastic optimization,
it is not just that there is some stochastic uncertainty in the set of inputs, stochastic probing
problems involve inputs that cannot be determined without probing (at some cost and/or within
some constraint). Applications of stochastic probing occur naturally in many settings, such as in
matching problems where compatibility cannot be determined without some trial or investigation
(for example, in online dating and kidney exchange applications). There is by now an extensive
literature for stochastic matching problems. For space efficiency, we will give an extended overview
of related work in Appendix G. Research most directly relating to this paper will appear as we
proceed.

The stochastic matching problem1 was introduced by Chen et al. [12]. In this problem, we are
given an adversarially generated stochastic graph G = (V,E) with a probability pe associated with
each edge e and a patience (or timeout) parameter `v associated with each vertex v. An algorithm
probes edges in E within the constraint that at most `v edges are probed incident to any particular
vertex v ∈ V . The patience constraint can be viewed as a simple budgetary constraint, where
each probe has unit cost and the patience constraint is the budget. When an edge e is probed, it
is guaranteed to exist with probability exactly pe. If an edge (u, v) is found to exist, it is added
to the matching and then u and v are no longer available. The goal is to maximize the expected
size of a matching constructed in this way. This problem can be generalized to offline vertices or
edges having weights and then the objective is to maximize the expected weight of the matching.
Notably, in Chen et al., the algorithm knows the entire stochastic graph in advance.

In addition to generalizing the setting of the results of Chen et al., Bansal et al. [6] introduced
an i.i.d. bipartite version of the problem where nodes on one side of the partition arrive online
and edges adjacent to that node are then probed. In their model, each online vertex (and its
adjacent edges) is drawn independently and identically from a known distribution. That is, the
possible “type” of each online node (i.e., the adjacent edge probabilities and edge weights) is known
and the input sequence is then determined i.i.d. from this known distribution, where the type of
a node is presented to the algorithm upon arrival. In both the Chen et al. and Bansal et al.
models, each offline node has unlimited patience, whereas each online node specifies its patience
upon arrival. As in other online bipartite matching problems, the match for an online node must
be made before the next online arrival. In both of these models, if an edge is probed and confirmed
to exist, then it must be included in the current matching (if possible). This problem is referred
to as the online stochastic matching problem2 (with patience) and also referred to as the stochastic
rewards problem, though we avoid the latter terminology. In various settings, we will study the
online stochastic matching problem. More specifically, we will consider online settings where the
algorithm knows the adversarially determined stochastic graph, where a stochastic (type) graph
and a distribution on the online vertices is known and online nodes are generated i.i.d. from this
distribution, and in the random order model (ROM) when the stochastic graph is both known and
unknown3. Amongst other applications, the online stochastic matching problem notably models

1Unfortunately, the term “stochastic matching” is also used to refer to more standard optimization where the
input (i.e., edges or vertices) are drawn from some known or unknown distributions but no probing is involved.

2The online stochastic matching problem is sometimes meant to imply unit patience but we will mainly be
interested in arbitrary patience values.

3In a related paper, we establish a 1− 1/e competitive ratio in the setting where the stochastic graph is unknown
and the offline vertices are weighted. This setting is simpler and allows for a completely combinatorial deterministic
algorithm. It is interesting to note that in this setting the same algorithm can be derived using the LP based approach
of this paper but the combinatorial method is conceptually and computationally simpler [8].
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online advertising where the probability of an edge can correspond to the probability of a purchase
in online stores or to pay per click revenue in online searching.

We note that these stochastic matching models generalize the corresponding classical non-
stochastic models where edges adjacent to an online node are known upon arrival and do not need
to be probed. It follows that any inapproximation results in the classical setting apply to the
corresponding stochastic setting.

2 Preliminaries and Techniques

The online stochastic matching problem generalizes the classical online bipartite setting as follows.
For each e ∈ E in the stochastic (bipartite) graph G = (U, V,E), there is a fraction 0 ≤ pe ≤ 1
associated with e that gives the probability of existence of the edge e. More precisely, each edge
e ∈ E is associated with an independent Bernoulli random variable of parameter pe, which we
denote by st(e), corresponding to the state of the edge. If st(e) = 1, then we say that e is active,
and otherwise we say that e is inactive. It will be convenient to hereby assume that E = U × V .
In this way, if we wish to exclude a pair (u, v) ∈ U ×V from existing as an edge in G, then we may
set pu,v = 0, thus ensuring that (u, v) is always inactive.

When an online node v ∈ V arrives, the online probing algorithm sees all the adjacent edges
and associated probabilities but must perform a probing operation on the edge to reveal/expose
its state, st(e). As in the classical problem, an online algorithm must decide on a possible match for
an online node v before seeing the next online node. The algorithm can be non-greedy and not
match a given v ∈ V even though some u ∈ U is still unmatched. The online stochastic matching
problem simplifies to the classical setting in one of two ways: (1) if pe ∈ {0, 1} for all edges e, or
(2) if the algorithm is allowed to probe all edges adjacent to an online node v before determining
which, if any, node to match to v. To make stochastic probing problems meaningful, we either must
have a cost for probing or some kind of commitment upon probing an input item. Specifically, if
an edge e = (u, v) is probed in the stochastic matching problem and turns out to be active, then e
must be added to the current matching, provided u and v are both currently unmatched. We say
that the online probing algorithm respects commitment or is commital, provided it satisfies
this property. Furthermore, in the stochastic matching problem, for each online node v, there is a
known patience parameter (also called timeout) `v that bounds the number of probes that can
be made to edges adjacent to v. The classical online bipartite matching problems (unweighted,
vertex weighted, or edge weighted) for adversarial, ROM, and i.i.d. input sequences all generalize
to the stochastic matching setting. We emphasize that the online stochastic matching problem
generalizes the classical online problem, even when restricted to the case of unit patience (i.e.,
`v = 1 for all v ∈ V ).

Clearly, in the classical adversarial or ROM settings, if the algorithm knew the input graph G,
the online algorithm could compute an optimal solution before seeing the online sequence and use
that optimal solution to determine an optimal matching online. But similar to knowing the type
graph in the classical setting with i.i.d. inputs, an algorithm still lacks the ability to know the
states of the edges of G, namely (st(e))e∈E , so that the stochastic matching problem is interesting,
whether the stochastic graph G is known or unknown to the algorithm. We are left then with
a wide selection of problems, depending on whether or not the stochastic graph is known, how
input sequences are determined, and whether or not edges or vertices are weighted. In the classical
i.i.d. bipartite matching problem, competitive bounds for an unknown distribution follow from the
corresponding ROM problem by a result of Karande et al. [27]. The same result (using the same
argument) holds in the stochastic matching setting, provided the stochastic graph is unknown. It
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is unclear to us whether this reduction continues to hold for the ROM setting when the stochastic
graph is known, as we expand upon in Section 4. We will focus on the following settings: a known
stochastic graph with adversarial and ROM inputs, the i.i.d. setting with a known stochastic type
graph and distribution on the online vertices, and an unknown stochastic graph with ROM arrivals
and weighted edges.

What is the benchmark against which we measure the competitive performance of an online
algorithm in the stochastic matching problem? In the classical online setting, we compare the
value of the online algorithm to that of an optimal matching of the graph. If the inputs are drawn
from a distribution, we then compare the expected value of the algorithm to the expected value
of an optimum matching. For stochastic probing problems, it is easy to see we cannot hope to
obtain a reasonable competitive bound for this type of comparison; that is, if we are comparing
the expected value of an online probing algorithm to the expected value of an optimum matching
of the stochastic graph. For example, consider a single online vertex with patience 1, and n offline
(unweighted) vertices where each edge e has probability 1

n of being present. The expectation of an
online probing algorithm will be at most 1

n while the expected size of an optimal matching (over all
instantiations of the edge probabilities) will be 1− (1− 1

n)n → 1− 1
e . This example clearly shows

that no constant ratio is possible if the patience is sublinear (in n = |U |).
A reasonable approach is to force the benchmark to adhere to the commitment and patience

requirements of G that the online algorithm satisfies. Following previous work and the explicit
reasoning in Brubach et al.[9], an ideal benchmark is the following: knowing the stochastic graph G
(or G and the type graph in the stochastic i.i.d. setting) and the patience requirements of the online
nodes, the benchmark can probe edges in any adaptive order but must satisfy the commitment and
patience requirements of the online vertices. By adaptive order, we mean that the next edge to be
probed will depend on all the edges that have been currently revealed and the current matching. We
emphasize that this benchmark is not restricted to any ordering of the online vertices. In particular,
we note that after probing some edge (u1, v1), the next probed edge can be (u2, v2) where u2 and
v2 each may be distinct from u1 and v1, respectively. As in online probing algorithms, the goal of
the benchmark is to build a matching whose weight is as large as possible in expectation. We refer
to this benchmark as the committal benchmark, and denote the expected value of its matching
by OPT(G).

We also consider a stronger benchmark which still must adaptively probe edges subject to
patience constraints, but isn’t restricted by commitment; that is, it may decide upon which subset
of edges to match after all its probes have been made. Once again, the probes of this benchmark
need not respect any ordering on the online nodes, and the benchmark’s goal is to build a matching
of maximum expected weight. We refer to this benchmark as the non-committal benchmark,
and denote the expected value of the matching it constructs by OPTnon(G). Observe that in the
case of full patience (i.e., `v = |U | for all v ∈ V ), the benchmark may probe all the edges of G,
and thus corresponds to the expected weight of the optimum matching of the stochastic graph.

Following what is standard in the stochastic matching literature, we prove our results against
the committal benchmark, though in Appendix C we prove that our results also hold against the
non-committal benchmark for the case of unit or full patience values.

2.1 A Review of Our Technical Contributions

Suppose we are presented a stochastic bipartite graph G = (U, V,E), with edge probabilities
(pe)e∈E , edge weights (we)e∈E and patience values (`v)v∈V . Here V is the set of online vertices
and U is the set of offline vertices. We assume U is known apriori to an online algorithm and
the vertices in V arrive online. In both the committal and non-committal offline benchmarks, it
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is not clear how to compute these optimal benchmark values. As such, one instead resorts to an
appropriate LP upper bound on their value.

The most prevalent (standard) LP used in the literature was introduced by Bansal et al. [6],
where each pair (u, v) for u ∈ U and v ∈ V has a variable xu,v, corresponding to the probability
that the committal benchmark probes (u, v).

maximize
∑

u∈U,v∈V
wu,v · pu,v · xu,v (LP-std)

subject to
∑
v∈V

pu,v · xu,v ≤ 1 ∀u ∈ U (2.1)∑
u∈U

pu,v · xu,v ≤ 1 ∀v ∈ V (2.2)∑
u∈U

xu,v ≤ `v ∀v ∈ V (2.3)

0 ≤ xu,v ≤ 1 ∀u ∈ U, v ∈ V. (2.4)

Bansal et al. [6] observed that if LPOPTstd(G) denotes the value of an optimal solution to LP-std,
then it is a relaxation of the committal benchmark OPT(G); that is,

OPT(G) ≤ LPOPTstd(G). (2.5)

To date, the most common technique for proving guarantees against the committal benchmark
involves comparing the performance of one’s probing algorithm to LPOPTstd(G), as opposed to
OPT(G) directly. In fact, when G is known to the algorithm, one can leverage a solution to LP-std
to determine which probes one should make (see [6, 3, 10, 11, 7]).

This is especially effective in the case of unit patience, as an optimum solution to LP-std, say
(xu,v)u∈U,v∈V , induces a distribution for each vertex v ∈ V . Rather,∑

u∈U
xu,v ≤ 1,

for each v ∈ V . Thus, when processing an arriving online node v, one can choose to probe u ∈ U
with probability xu,v (where one passes on v with probability 1 −

∑
u∈U xu,v). While this ignores

the issue of the online nodes colliding (i.e., multiple vertices of V attempting a match to u ∈ U),
(2.1) ensures each vertex of U is matched at most once in expectation. In the case of offline vertex
weights, this is sufficient to prove a guarantee of 1− 1/e against LPOPTstd(G), no matter how the
vertices of V are presented to the probing algorithm. Similarly, in the case of edge weights, this
approach suffices to achieve a guarantee of 1/2, albeit requiring the vertices of V to arrive in random
order. We emphasize that G must be known to the probing algorithm in order to implement these
strategies. Both these arguments (in the more general setting of arbitrary patience) are discussed
in detail in Section 3.

If one now moves to the case when v has arbitrary patience `v, then the values (xu,v)u∈U satisfy
the following inequalities: ∑

u∈U
xu,v ≤ `v and

∑
u∈U

pu,v · xu,v ≤ 1. (2.6)

For a fixed v, the techniques in [6, 3, 10, 7, 11] involve first drawing a random ordering π of U (where
different distributions are used in different papers). Once this is done, a random subset P ⊆ U
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is drawn using the GKSP algorithm of Gandhi et al. [22], with the guarantee that u ∈ P with

probability xu,v, and that |P | ≤ `v. The edges (ui, v)
|P |
i=1 are then probed in the order u1, . . . , u|P |

induced by π. Since the algorithm must respect commitment, (ui, v) is probed with probability∏i−1
j=1(1− puj ,v).

Clearly this GKSP rounding approach is problematic, as a fixed vertex u ∈ U may get probed
with probability sufficiently less than xu,v, depending on how highly prioritized it is in the ordering
π. The solutions in the literature involve drawing π in such a way that each vertex u ∈ U is probed
with probability as close to xu,v as possible, but it is clear that no approach is without loss for
every vertex of U .

While this describes the major challenge with generalizing to arbitrary patience, in theory
it does not preclude a probing algorithm from existing which matches the ratio of 1 − 1/e, as
attainable in the vertex weighted unit patience case. Unfortunately, the ratio between OPT(G)
and LPOPTstd(G) can become quite small, depending on the values of (`v)v∈V and the instance G.
In [9], Brubach et al. define the stochasticity gap of this LP as the infimum of this ratio across
all stochastic graphs, namely infG OPT(G)/LPOPTstd(G). Clearly, the notion of a stochasticity
gap can be extended to any LP relaxation of the committal benchmark, as we shall later do in the
context of our new LP.

Brubach et al. also consider the following example, thus providing a negative result for the
stochasticity gap of LP-std.

Example 2.1 ([9]). Fix n ≥ 1, and construct an unweighted graph Gn = (U, V,E). Suppose that
|U | = |V | = n and `v = n for all v ∈ V . Set E := U×V , and define pu,v := 1/n for each (u, v) ∈ E.
Observe that Gn corresponds to the Erdős–Rényi random graph Gn,n,1/n. In this case,

E[OPT(Gn)] ≤ 0.544 · (1 + o(1)) LPOPTstd(Gn),

where the asymptotics are over n→∞ 4.

Thus, any probing algorithm which attains a guarantee against LPOPTstd(G) has a provable
competitive ratio of at most 0.544.

In order to get around this limitation, Gamlath et al. [21] consider an LP in the setting of full
patience, which imposes exponentially many constraints, in addition to those of LP-std. Specifically,
for each v ∈ V and S ⊆ U , they ensure that∑

u∈S
pu,v · xu,v ≤ 1−

∏
u∈S

(1− pu,v). (2.7)

Observe that in the variable interpretation of LP-std, the left-hand side corresponds to the proba-
bility a probing algorithm makes a match to a vertex of S, and the right-hand side corresponds to
the probability an edge between v and S exists5. The goal of these additional constraints is thus
to force the LP to better capture the behavior of the committal benchmark6.

Using a polynomial time oracle, Gamlath et al. argue that their LP remains poly-time solvable,
despite having exponentially many constraints. As in the setting LP-std, they solve their LP to

4The example in Brubach et al [9] can clearly be extended to the case when Gn has linearly sized patience, that
is when minv∈V `v = Ω(n), at the expense of the strength of their negative result (the constant 0.544).

5The LP considered by Gamlath et al. in [21] also places the analogous constraints of (2.7) on the vertices of
U . That being said, these additional constraints are not used anywhere in the work of Gamlath et al., so we do not
consider them when we provide a generalization of their LP in A

6In fact, the results of Gamlath et al. are proven against the optimum expected matching of G, which is equivalent
to the non-committal benchmark, as they work exclusively in the setting of full patience.
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attain a solution (xu,v)u∈U,v∈V for G. Each time an online vertex v ∈ V then arrives, they draw
a random permutation πv on a random subset of U , which indicates both the probes they intend
to make, and the order they intend to make them in. By following πv, their procedure is lossless;
that is, they are able to probe u ∈ U with probability exactly xu,v

7.
Unfortunately, the results of Gamlath et al., as well as related techniques of Costello et. al [13],

do not seem to naturally extend to arbitrary patience. For instance, even the correct modification
of (2.7) is not clear to us. However, we are able to provide a reasonable extension of the Gamlath
et al. LP in Appendix A.

2.2 Defining a New LP

In this section, we design a new LP for the problem of designing a fixed vertex lossless probing
algorithm, which works no matter the edge probabilities, edge weights and patience values (`v)v∈V
of G = (U, V,E). Instead of attempting to find the appropriate constraints on the variables of LP-
std, we take a different approach. Specifically, we ensure our LP has polynomially many constraints,
while allowing it exponentially many variables to better indicate how the committal benchmark
make decisions.

For each i ≥ 1, denote U (i) as the collection of tuples of length i constructed from U whose
entries are all distinct. Moreover, set U (≤i) := ∪ij=1U

(j).

For each v ∈ V , 1 ≤ k ≤ `v and u ∈ U (k), define

giv(u) := pui,v ·
i−1∏
j=1

(1− puj ,v),

where u = (u1, . . . , uk), and i ∈ [k] (here [k] := {1, . . . , k}). Observe that if one reveals the edge
states (st(ui, v))ki=1 in order, then giv(u) corresponds to the probability that (ui, v) is the first active
edge revealed.

We also define a variable, denoted xv(u), which may loosely be interpreted as the likelihood
the committal benchmark probes the vertices in the order specified by u = (u1, . . . , uk). These
definitions lead to the following LP:

maximize
∑
v∈V

∑
u∈U(≤`v)

 |u|∑
i=1

wui,v g
i
v(u)

 · xv(u) (LP-new)

subject to
∑
v∈V

`v∑
i=1

∑
u∗∈U(≤`v):

u∗i =u

giv(u
∗) · xv(u∗) ≤ 1 ∀u ∈ U (2.8)

∑
u∈U(≤`v)

xv(u) ≤ 1 ∀v ∈ V, (2.9)

xv(u) ≥ 0 ∀v ∈ V,u ∈ U (≤`v) (2.10)

LP-new is a relaxation of the committal benchmark. However, unlike many of the LP formu-
lations in the stochastic matching literature, we are not aware of an immediate proof of either of

7The results of Costello et. al [13] also consider the full patience non-bipartite stochastic matching problem, though
without edge weights. They derive a probing strategy for a fixed vertex v ∈ V of G = (V,E) and its neighbourhood
N(v), which attains the same guarantee as that of Gamlath et al. [21] through combinatorial techniques.
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these facts. We instead must introduce a related stochastic probing problem, known as the re-
laxed stochastic matching problem, which is exactly encoded by LP-new, and whose optimum
value upper bounds the committal benchmark. We provide the relevants definitions in Appendix
A, where we also prove the following theorem:

Theorem 2.2. For any stochastic graph G, an optimum solution to LP-new upper bounds OPT(G),
the value of the committal benchmark on G.

Not only is LP-new a relaxation of the committal benchmark, it also can be solved efficiently.
To see this, we first take its dual:

minimize
∑
u∈U

αu +
∑
v∈V

βv (LP-new-dual)

subject to βv +

|u∗|∑
j=1

gjv(u
∗) · αu∗j ≥

|u∗|∑
j=1

wu∗j ,v · g
j
v(u
∗) ∀v ∈ V,u∗ ∈ U (≤`v) (2.11)

αu ≥ 0 ∀u ∈ U (2.12)

βv ≥ 0 ∀v ∈ V (2.13)

In Appendix B, we argue that LP-new-dual has a polynomial time separation oracle, by solving
an optimization problem similar to the one considered by Brubach et al. [9]. By standard duality
techniques involving the ellipsoid algorithm [35, 23], this allows us to find a solution to LP-new in
polynomial time, no matter the patience values of G (see [40, 2, 30] for similar examples). That
being said, LP-new clearly always has an optimum solution, which can be found efficiently when
`max := maxv∈V `v is a constant, independent of the size of |U |. Moreover, our results are all in
the context of competitive analysis, and so the ratios we present in the various online stochastic
matching models all hold, independently of the fact that LP-new can be solved in poly-time.

Suppose now that we are presented a feasible solution, say (xv(u))u∈U(≤`v),v∈V , to LP-new, for
the stochastic graph G = (U, V,E). For each v ∈ V and u ∈ U , define

x̃u,v :=

`v∑
i=1

∑
u∗∈U(≤`v):

u∗i =u

gi(u∗) · xv(u∗)
pu,v

. (2.14)

In order to simplify our notation in the later sections, we refer to the values (x̃u,v)u∈U,v∈V as the
(induced) edge variables of the solution (xv(u))v∈V,u∈U(≤`v) .

If we now fix s ∈ V , then we can easily leverage constraint (2.9) to argue that the edge variables
(x̃u,s)u∈U can be probed without loss. Specifically, we may execute the following fixed vertex probing
algorithm, which we refer to as VertexProbe:

9



Algorithm 1 VertexProbe

Input the stochastic graph G = (U, V,E), a fixed node s ∈ V and the variables (xs(u))u∈U(≤`s)

associated to s in a solution to LP-new for G.
1: Initialize M← ∅.
2: Return M with probability 1−

∑
u∈U(≤`s) xs(u) . pass with a certain probability..

3: Draw u∗ from U (≤`s) with probability xs(u
∗) (see (2.9)).

4: Denote u∗ = (u∗1, . . . , u
∗
k) for k := |u∗|.

5: for i = 1, . . . , k do
6: Probe (u∗i , s).
7: if st(u∗i , s) = 1 then
8: Set M(s)← u∗i and return M.
9: end if

10: end for
11: Return M.

Observe the following claim, which follows immediately from the definition of the edge variables,
(x̃u,v)u∈U,v∈V :

Lemma 2.3. Let G = (U, V,E) be a stochastic graph with LP-new solution (xv(u))v∈V,u∈U(≤`v),
and whose induced edge variables we denote (x̃u,v)u∈U,v∈V . If the VertexProbe algorithm is
passed a fixed node s ∈ V , then each node u ∈ U is probed with probability x̃u,s.

Moreover, the edge (u, s) is returned by the algorithm with probability pu,v · x̃u,s.

Remark. We say that VertexProbe commits to the edge (u, s), provided the algorithm outputs
this edge when executing on the fixed node s ∈ V .

Before providing an overview of our results, we provide a general algorithmic template which
unifies how all of our online probing algorithms are implemented8.

Let G = (U, V,E) be an adversarially generated stochastic graph, with arbitrary patience values,
edge weights and edge probabilities. We may always assume that the online probing algorithm has
access to the offline vertices U , but its information regarding V and E is limited, depending on
the online model we work in. In general however, we always assume that the online vertices of V
are presented in some order to the online probing algorithm, say v1, . . . , vn where n = |V |, either
through an adversarial, ROM or i.i.d arrival process. We refer to a vertex vt as arriving at time
1 ≤ t ≤ n. We then follow the general high level template for defining online probing algorithms:

8In Section 3, we must use a modified VertexProbe subroutine in the ROM setting with edge weights to improve
the competitive ratio from 1/2 to 1− 1/e.
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Algorithm 2 General Template

Input U of G = (U, V,E), as well as the remaining information regarding G, depending on the
online model.

1: M← ∅.
2: for t = 1, . . . , n do
3: Using U and the probing decisions of the previous arrivals (together with G = (U, V,E) if it

is known), compute a stochastic graph Ht = (Ut, Vt, Et) which contains arrival vt, and satisfies
Ut ⊆ U .

4: Compute an optimum solution of LP-new for Ht, say (xv(u))
v∈Vt,u∈U(≤`v)

t
.

5: Set et ← VertexProbe(Ht, (xvt(u))
u∈U(≤`vt )

t

, vt).

6: If et 6= ∅, then denote et = (ut, vt), and if ut is currently unmatched, set M(vt)← ut.
7: end for
8: Return M.

We once again emphasize that the online probing algorithm has no control over the order of
the arrivals, so step (3) is the only place this algorithmic template can be modified. Choosing the
“correct” choice ofHt depends on how much information we are privy to (e.g., is the stochastic graph
known or unknown), and whether we wish our probing algorithm to execute adaptively - that is,
depend upon the probing outcomes of the previous nodes, v1, . . . , vt−1 – or not, that is, execute
non-adapatively9. We note that in our results, we will execute Algorithm 2 non-adaptively and
the resulting algorithms will be non-greedy. In the subsequent sections, we investigate these issues
in detail, and attempt to attain or approach the same competitive ratios one can get in the classical
(non-stochastic) online matching settings (when there is a meaningful generalization). All of our
results are proven by comparing the performance of the relevant online probing algorithm to LP-
new. We are typically able to make use of the classical techniques in the literature (with some
key modifications), and so we again emphasize that one of our main technical contributions is in
generalizing to arbitrary patience from the more tractable unit/full patience settings and the new
LP that is used to derive our results. We also argue that many of the results in the stochastic
matching literature actually hold against the non-committal benchmark, as we discuss in detail in
Appendix C for the case of general (i.e., not necessarily bipartite) stochastic graphs. We argue this
by proving that LP-std is a relaxation of the non-committal benchmark.

2.3 An Overview of Our Results

With these definitions in mind, we now reiterate and point ahead to our main results as first stated
in our abstract. All of our results apply to arbitrary patience and the competitive ratios are with
respect to the committal benchmark.

1. Theorem 3.1 shows that Algorithm 3 is an online algorithm with competitive ratio 1 − 1
e in

the following stochastic setting:

• There is a known stochastic graph

• Online vertices are given adversarially

9When processing an online node arrival, say vt, a non-adaptive online probing algorithm can base its probes of
vt on the identities of the previous vertex arrivals, say v1, . . . , vt−1, as well as their edge weights, edge probabilities
and patience values (as well as G itself if it is known). The probes of vt cannot however depend upon the previously
probed edge states of (st(u, vk))u∈U,k∈[t−1].
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• Offline vertices have weights

This result shows that the .544 inapproximation bound against the LP relaxation in Bansal
et al. [6] does not hold with respect to our new LP relaxation (see Example 2.1).

2. Theorem 3.8 shows that Algorithm 5 is an online algorithm with competitive ratio 1 − 1
e in

the following setting:

• There is a known stochastic graph

• Online vertices are presented in an order determined by a uniform at random permuta-
tion of the online vertices in the stochastic graph (i.e., stochastic random order model)

• Edges have weights

This algorithm generalizes10 the online probing algorithm considered by Gamlath et. al [21]
in what they refer to as the query-commit model.

3. Theorem 4.3 shows that Algorithm 6 is an online algorithm with competitive ratio 1 − 1
e in

the following stochastic i.i.d. setting (improving upon the previously best ratio of 0.46 in [9]):

• There is a known stochastic (type) graph

• Online vertices are drawn independently and identically from a distribution on the online
vertices (with their adjacent stochastic edges)

• Edges have weights

In the classical i.i.d. setting with non-integral arrival rates, Manshadi et al. [32] present an
example that shows that 1− 1/e is optimal for classically non-adaptive11 algorithms. Our
algorithm fits this classical definition and applies to non-integral arrival rates and hence our
algorithm has an optimal competitive ratio amongst this restricted class of probing algorithms.

4. Theorem 5.2 shows that Algorithm 7 is an online algorithm with (tight) competitive ratio 1
e

in the following setting:

• The stochastic graph is not known to the algorithm

• Online vertices are given in random order

• Edges have weights

This generalizes the classical non-stochastic result of Kesselheim et al. [29].

All of our probing algorithms are randomized and implemented non-adaptively. In Appendix
E we discuss the implications of the non-adaptivity by considering the relevant adaptivity gaps
of the online stochastic matching problems we consider. Roughly speaking, an adaptivity gap is
the worst case ratio of performance between the optimum non-adaptive probing algorithm, and the
committal benchmark12.

10In Appendix C, we provide a reasonable generalization of the Gamlath et al. LP, and show that it attains the
same value as LP-new.

11Manshadi et al. [32] use the terminology non-adaptive to mean that a (classical) online algorithm in the known
i.i.d. setting uses only the type of the arriving node to determine its matching decisions. Observe that this restriction
is sufficient to ensure that an online probing algorithm is non-adaptive (by our definition) in the stochastic matching
setting.

12We provide a more precise definition of adaptivity gaps in Appendix E.
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3 Known Stochastic Graphs: Adversarial and ROM Arrivals

In this section, we restrict our attention to online bipartite stochastic matching in the setting where
the stochastic graph is known to the algorithm. We use our new LP to guide the sequence of probes
for each of the online vertices. We first prove Theorem 3.1, showing that Algorithm 3 achieves a
1− 1

e competitive ratio for the setting of offline vertex weights and adversarial online arrivals.
We then consider Algorithm 3 in the case of arbitrary edge weights, under the assumption that

the online nodes arrive in random order, thus attaining a competitive ratio of 1/2 (which we show
is tight for this algorithm). By considering a modification of Algorithm 3, we can improve this
competitive ratio to 1 − 1/e using the techniques of Ehsani et al. [17] and Gamlath et al. [21].
This extends the recent work of [21] to arbitrary patience in what they refer to as the query-commit
model.

The results of this section also yield a lower bound (positive result) on the adaptivity gap of
the bipartite stochastic matching problem with one-sided patience.

3.1 Defining the Probing Algorithm

We now consider the probing algorithm which is the subject of Theorems 3.1 and 3.5.

Algorithm 3 Known Stochastic Graph

Input G = (U, V,E), a stochastic graph with edge probabilities (pe)e∈E , edge weights (we)e∈E
and patience parameters (`v)v∈V

1: Set M← ∅.
2: Solve LP-new, and find an optimal solution (xv(u))v∈V,u∈U(≤`v) .
3: for t = 1, . . . , |V | do
4: Process vt (vertex arriving at time t)
5: Set (ut, vt)← VertexProbe(G, (xvt(u))

u∈U(≤`vt )
, vt).

6: if (ut, vt) 6= ∅ and ut is unmatched then
7: Set M(vt) = ut.
8: end if
9: end for

10: Return M.

3.2 Adversarial Arrivals

We first consider the known stochastic online matching problem in the case of arbitrary patience,
offline vertex weights and adversarial online vertex arrivals. Specifically, we provide a proof of
Theorem 3.1.

Theorem 3.1. If Algorithm 3 is passed a stochastic graph G = (U, V,E) with offline vertex weights
(wu)u∈U (that is, wu,v = wu for all (u, v) ∈ E) and arbitrary patience, then

E[val(M)] ≥
(

1− 1

e

)
·OPT(G).

Thus, the competitive ratio of this algorithm (when the stochastic graph and order of online vertices
is chosen by an adversary) is 1− 1/e against the committal benchmark.
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Proof. Let us now denote val(M) as the value of the matching returned by Algorithm 3. Observe
that

E[val(M)] =
∑
u∈U

wu P[u is matched by the algorithm].

As such, for each fixed u ∈ U , we may focus on lower bounding the probability that the algorithm
matches it.

Recall that associated with the solution (xv(u))v∈V,u∈U(`v) are the edge variables (x̃u,v)u∈U,v∈V ,
as defined following LP-new in Section 2.

Observe now that u ∈ U is matched by the algorithm, if and only if there exists some v ∈ V
which commits to u while executing VertexProbe. For a fixed v, we denote this event by C(u, v).
Using Lemma 2.3, we get that

P[C(u, v)] = pu,v x̃u,v,

for each v ∈ V .
Now, since the executions of VertexProbe are independent, so are the events {¬C(u, v)}v∈V ,

and so
P[u is not matched] =

∏
v∈V

(1− pu,v x̃u,v).

As a result,

P[u is matched] = 1−
∏
v∈V

(1− pu,v x̃u,v)

≥ 1−
∏
v∈V

exp (−pu,v x̃u,v)

= 1− exp

(
−
∑
v∈V

pu,v x̃u,v

)
,

as 1− z ≤ exp(−z) for all z ∈ R (here we use exp(z) := ez for notational clarity).
Now (xv(u))v∈V,u∈U(≤`v) is a feasible solution to LP-new, and so∑

v∈V
pu,v x̃u,v ≤ 1.

We may therefore conclude that

P[u is matched] ≥ (1− exp(−1))
∑
v∈V

pu,v x̃u,v,

since 1− exp(−z) ≥ (1− exp(−1)) z for all 0 ≤ z ≤ 1.
Thus,

E[val(M)] =
∑
u∈U

wu P[u is matched]

≥ (1− exp(−1))
∑
u∈U

∑
v∈V

wu pu,v x̃u,v

= (1− exp(−1)) LPOPTnew(G),

as (xv(u))v∈V,u∈U(≤`v) is an optimal solution to LP-new. By Theorem 2.2, OPT(G) ≤ LPOPTnew(G),
and so the proof is complete.
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Suppose that we fix an ordering π of V . We can then define OPT(G, π) to be the largest
expected value an online probing algorithm can attain on G, provided it is presented the vertices
V in the order π. With this definition, we can define the order gap of G as the worst case ratio
between OPT(G, π1) and OPT(G, π2), over all orderings π1 and π2 of V ; that is, the ratio order(G),
where

order(G) :=
infπ1 OPT(G, π1)

supπ2 OPT(G, π2)
. (3.1)

If C corresponds to the collection of all vertex weighted stochastic graphs, then we can define the or-
der gap of C as the minimum value of order(G) over all G ∈ C ; that is, the value infG∈C order(G).

Since Algorithm 3 achieves a competitive ratio of 1−1/e no matter the order the online vertices
are presented to it, we observe the following corollary:

Corollary 3.2. The order gap of the collection of vertex weighted stochastic graphs is no smaller
than 1− 1/e. Note that this is a positive result.

We contrast this observation with an upper bound (negative result) on the order gap.

Example 3.3. Let us consider the bipartite graph G = (U, V,E) where U = {u1, u2} is the set
of offline vertices and V = {v1, v2} is the set of online vertices each of which has unit patience.
Denote E = {(u1, v1), (u2, v1), (u2, v2)} as the set of edges of G, with edge probabilities pu1,v1 = 1

2 ,
pu2,v1 = 1 and pu2,v2 = 1

2 . The order gap of G is at most 0.8.

Proof. If we process vertex v1 before vertex v2, we either probe (u1, v1) or (u2, v1) while processing
v1. If we probe the former, the only other edge that we can probe is (u2, v2) and the expected size
of the constructed matching is 1

2 + 1
2 = 1, as both of these edges are active with probability 1

2 . If
instead we probe edge (u2, v1), then it is always active and there are no more edges that we can
probe. This also gives an expected matching size of 1. Thus, the maximum expected size of the
matching is 1 when v1 is processed before v2.

If instead we process vertex v2 before v1, we may probe (u2, v2), which is active with probability
1
2 . If the edge is active, we next probe edge (u1, v1), which is active with probability 1

2 . In this
case, expected size of matching found is 3

2 . If (u2, v2) is inactive, we instead probe (u2, v1), which
is always active and so in this case, the expected size of matching found is 1. Thus, the maximum
expected size of matching when v2 is probed before v1 is 1

2
3
2 + 1

21 = 5
4 .

While it would be interesting to know the precise value of the order gap (even just for the case
of offline vertex weights), 1− 1/e is the limitation of our techniques for proving positive results, as
demonstrated by the following example:

Example 3.4. Consider a graph G with a single offline node u and a collection of n online nodes
V . For each edge e = (u, v) with v ∈ V , set pu,v := 1/n. As the example is in the setting of unit
patience, LP-new and LP-std are equivalent, and in particular, LPOPTnew(G) = LPOPTstd(G).
Thus, we describe the remainder of the example with respect to the definition of LP-std for simplic-
ity.

Observe that the LP solution xu,v := 1 for each v ∈ V satisfies the constraints of LP-std.
Moreover, it evaluates to an objective value of 1. Thus, LPOPTstd(G) ≥ 1.

Observe now that if we consider an arbitrary probing algorithm, then its only option is to probe
the edges of u in some arbitrary order (or not at all). Of course, each edge is active with probability
1/n, so we observe that

P[G has a least one active edge] = 1− (1− 1/n)n = (1 + o(1))

(
1− 1

e

)
,
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as we allow n→∞.
As a result,

inf
G

OPT(G)

LPOPTnew(G)
≤
(

1− 1

e

)
,

and so in particular, Algorithm 3 achieves the best possible bound against LPOPTnew(G).

3.3 Random Order Arrivals

We now consider the known stochastic matching problem in the case of arbitrary edges weights
and ROM arrivals. We first prove Theorem 3.5, which shows that Algorithm 7 gets a competitive
ratio of 1/2. After arguing that the analysis is tight, we introduce a modified VertexProbe
algorithm, which we refer to as VertexProbe-S. By replacing VertexProbe with the subroutine
VertexProbe-S in Algorithm 3, we are able to improve the competitive guarantee to 1− 1/e.

Theorem 3.5. In the ROM input model, if Algorithm 3 is passed a stochastic graph G = (U, V,E)
with arbitrary edge weights (we)e∈E and patience (`v)v∈V , then

E[val(M)] ≥ 1

2
·OPT(G),

Thus, against the committal benchmark, the competitive ratio of this algorithm (when the stochastic
graph is chosen by an adversary and order of online vertices is determined uniformly at random)
is 1/2.

We include the proof of Theorem 3.5 in Appendix F, as it has a relatively simple analysis
and helped motivate the improvement to 1 − 1/e. We now consider the following example, which
confirms the performance guarantee of Algorithm 3 is tight:

Example 3.6. Let G = (U, V,E) be a bipartite graph with a single offline node u, online vertices
V = {v1, v2} and edges E = {(u, v1), (u, v2)}. We assume that the online nodes have unit patience.

Fix 0 < ε < 1, and define the edge probabilities p(u,v1) := ε and pu,v2 := 1− ε. Moreover, define
the weights of the edges as wu,v1 := 1/ε and wu,v2 = ε/(1− ε).

For this instance, if we allow ε→ 0, then the expected weight of matching returned by Algorithm
3 in the ROM setting is at most half that of OPT(G).

Proof. Since we work in the unit patience setting for G, we express the relevant linear program as
in the setting of LP-std:

maximize wu,v1 · pu,v1 · xu,v1 + wu,v2 · pu,v2 · xu,v2 (3.2)

subject to pu,v1 · xu,v1 + pu,v2 · xu,v2 ≤ 1 (3.3)

0 ≤ xu,v1 ≤ 1 (3.4)

0 ≤ xu,v2 ≤ 1 (3.5)

The optimal solution to this LP corresponds to xu,v1 = xu,v2 = 1, and the optimal value is 1+ ε.
Now, when considering the order in which v1 arrives before v2, if we probe the edge e ∈ E with

probability xe, the expected value of matching returned is

wu,v1 xu,v1 pu,v1 + (1− xu,v1 pu,v1)wu,v2 x(u,v2) p(u,v2) = 1 + (1− ε) ε.

Similarly, when considering the order in which v2 arrives before v1, if we probe the edge e ∈ E with
probability xe, then the expected value of matching returned is

wu,v2 xu,v2 pu,v2 + (1− xu,v2 pu,v2)wu,v1 xu,v1 pu,v1 = 2 ε.
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Thus, as the order of arrivals is determined uniformly at random, the expected value of the matching
returned is

1

2
(2ε+ 1 + ε− ε2),

which tends to 1/2 as ε tends to 0. Moreover, the optimum value of the LP tends to 1 as ε tends
to 0, so the ratio of these values tends to 1/2. Moreover, for this specific choice of G,

LPOPTnew(G) = OPT(G),

and so the proof is complete.

We remark that there is an online algorithm that achieves the optimum expectation since the
stochastic graph is known. That is, the online algorithm would simply not probe (u, v1), if v1 is
the first arrival.

3.3.1 Improving Upon the Competitive Ratio

In [21], Gamlath et al. showed, among other things, that when G = (U, V,E) has full patience,
there exists a probing algorithm which achieves an approximation ratio of 1− 1/e. This algorithm
in fact executes in the online setting, in which G is known and the probing algorithm respects a
vertex order that is generated uniformly at random.

In addition to using their new LP relaxation (as discussed in Section 2), Gamlath et al. adapted
the techniques of Ehsani et al. [17] from the prophet secretary problem to get a competitive ratio
of 1 − 1/e in the case of full patience. We now generalize their algorithm to attain the same
competitive ratio, while handling arbitrary patience constraints. We emphasize that our analysis
proceeds almost identically, though this is only made possible by our definition of LP-new 13.

Given an arbitrary stochastic graph G = (U, V,E), let us suppose we are presented an optimum
solution to LP-new, denoted (xv(u))v∈V,u∈U(≤`v) , whose edge variables we denote by (x̃u,v)u∈U,v∈V .
In this case, define

cu :=
∑
v∈V

wu,v pu,v x̃u,v

for each u ∈ U . We can view cu as corresponding to the contribution of u to the evaluation of
(xv(u))v∈V,u∈U(≤`v) as a solution to LP-new. Specifically, observe that∑

u∈U
cu =

∑
u∈U,v∈V

wu,v pu,v x̃u,v = LPOPTnew(G). (3.6)

Let us now return to the ROM setting, though we describe it in a slightly different way for
the stochastic graph G = (U, V,E). As in Devanur et al. [16], for each v ∈ V , draw Yv ∈ [0, 1]
independently and uniformly at random. We assume that the vertices of V are presented to the
algorithm in an increasing order, based on the values of (Yv)v∈V . In this way, we say that vertex
v ∈ V arrives at time Yv. Observe that the vertices of V are presented to the algorithm in a
uniformly at random order, so this interpretation is equivalent to the ROM setting.

We now describe a modification of Algorithm 3 that is more selective as to which of the edges
returned by VertexProbe we are willing to accept. Specifically, when v arrives at time Yv,
VertexProbe is executed as before. However, if VertexProbe returns the edge e = (u, v), then
we only add e to the matching provided u is unmatched and we ≥ (1− eYv−1) · cu. Of course, this

13In Appendix A, we provide a reasonable generalization of the Gamlath et al. LP, and show that it attains the
same value as LP-new.
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high level description of the online probing algorithm clearly does not respect commitment, but
fortunately we can run a simulated version of VertexProbe, which we refer to as VertexProbe-
S.

Algorithm 4 VertexProbe-S

Input the stochastic graph G = (U, V,E), a fixed node s ∈ V , the variables (xs(u))u∈U(≤`s)

associated to s in a solution to LP-new for G, and 0 ≤ z ≤ 1.
1: Initialize M← ∅.
2: Return M with probability 1−

∑
u∈U(≤`s) xs(u) . pass with a certain probability.

3: Draw u∗ from U (≤`s) with probability xs(u
∗) (see (2.9)).

4: Denote u∗ = (u∗1, . . . , u
∗
k) for k := |u|.

5: for i = 1, . . . , k do
6: if wu∗i ,s ≥ (1− ez−1) · cu∗i then
7: Probe (u∗i , s).
8: if st(u∗i , s) = 1 then
9: Set M(s)← u∗i and return M.

10: end if
11: else draw Z ∼ Ber(pu∗i ,v) independently. . a Bernoulli of parameter pu∗i ,v.
12: if Z = 1 then
13: Set M(s)← u∗i and return M. . drawing Z simulates an edge probe.
14: end if
15: end if
16: end for
17: Return M.

Remark. Observe that VertexProbe-S makes a probe to the edge (u, s), only if

wu,s ≥ (1− ez−1) · cu.

If this condition is not satisfied, then it still may return the edge (u, s), however (u, s) will not be
probed. We make sure to return (u, s), so that VertexProbe-S can be coupled with Vertex-
Probe, as this will simplify the proof of Theorem 3.8.

We say that VertexProbe-S commits to the edge (u, s), provided it returns this edge (even
if it doesn’t actually probe (u, s)), when executed with the parameter 0 ≤ z ≤ 1. Observe that
VertexProbe-S returns (u, s) with the same probability as VertexProbe, so we can make use of
Lemma 2.3 to get an analogous guarantee.

Lemma 3.7. Suppose G = (U, V,E) is a stochastic graph with fixed node s ∈ V and LP-new
solution (xv(u))v∈V,u∈U(≤`v), whose induced edge variables we denote by (x̃u,v)u∈U,v∈V .

If VertexProbe-S is passed the fixed node s, then (u, s) is returned with probability pu,v · x̃u,s
for each u ∈ U , no matter which value of 0 ≤ α ≤ 1 is presented to VertexProbe-S. Moreover,
the edge (u, s) is probed only if wu,s ≥ (1− ez−1) · cu.

We now can implement a modified version of Algorithm 3 which executes identically to the high
level modification we just described, while respecting commitment.

18



Algorithm 5 Modified Known Stochastic Graph

Input G = (U, V,E), a stochastic graph with edge probabilities (pe)e∈E , edge weights (we)e∈E
and patience parameters (`v)v∈V .

1: Set M← ∅.
2: Solve LP-new, and find an optimal solution (xv(u))v∈V,u∈U(≤`v) .
3: For each v ∈ V , draw Yv ∈ [0, 1] independently and uniformly at random.
4: for v ∈ V in increasing order of Yv do
5: Set (u, v)← VertexProbe-S(G, v, (xv(u))u∈U(≤`v) , Yv).
6: if (u, v) 6= ∅, and wu,v ≥ (1− eYv−1) · cu then
7: if u is unmatched then
8: Set M(v) = u. . (u, v) is matched only if (u, v) is probed and st(u, v) = 1.
9: end if

10: else
11: Pass on (u, v).
12: end if
13: end for
14: Return M.

Theorem 3.8. In the ROM input model, if Algorithm 5 is passed a stochastic graph G = (U, V,E)
with arbitrary edge weights (we)e∈E and patience (`v)v∈V , then

E[val(M)] ≥
(

1− 1

e

)
·OPT(G),

Thus, the competitive ratio of this algorithm is 1− 1/e against the committal benchmark.

The analysis of Theorem 3.8 follows very closely the full patience proof presented in Gamlath
et al. [21], and hence is mainly motivated by the single item prophet secretary problem of Ehsani
et al. [17]. However, for sake of completeness, we include the argument.

Proof of Theorem 3.8. For each offline node u ∈ U , denote val(M(u)) as the weight of the edge
assigned to u (which is zero, if u remains unmatched).

Observe then that
E[val(M)] =

∑
u∈U

E[val(M(u))].

Thus, in order to complete the proof it suffices to show that

E[val(M(u))] ≥
(

1− 1

e

)
· cu (3.7)

for each u ∈ U , as we know that
∑

u∈U cu = LPOPTnew(G) ≥ OPT(G) (by Theorem 2.2).
As such, let us suppose u ∈ U is fixed for the remainder of the proof. The remaining computa-

tions follow Ehsani et al. [17] for the single item prophet secretary problem, though we must make
use Lemma 3.7 and constraint (2.8) of LP-new.

Let us now define the random variables Nu and Mu,v where:

1. Nu :=
∑

v∈V (1− eYv−1) · cu · 1[M(u)=v],

2. Mu,v :=
(
wu,v − (1− eYv−1) · cu

)
· 1[M(u)=v].
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That is, if u is matched to v, then Nu is assigned the value (1 − eYv−1) · cu and Mu,v is assigned(
wu,v − (1− eYv−1) · cu

)
. Proving (3.7) thus reduces to showing that

E[Nu] +
∑
v∈V

E[Mu,v] ≥
(

1− 1

e

)
· cu.

In other words, the cumulative amount assigned to u and the vertices of V is at least (1− 1/e) · cu
in expectation14.

We first focus on lower bounding E[Nu]. Let us define Tu as the arrival time of the online vertex
which matches to u (which is 1, if no such vertex exists). For convenience, define the functions
r = r(t), F = F (t) and α = α(t), where for t ∈ [0, 1].

r(t) := P[Tu ≥ t], F (t) := 1− r(t), and α(t) := 1− et−1.

Define C(u, v) as the event in which v commits to u when VertexProbe-S is executed using v ∈ V .
Observe that the events {C(u, v)}v∈V are independent, as the executions of VertexProbe-S in
Algorithm 5 are themselves independent.

For each v ∈ V , let us now define the function ψu,v = ψu,v(t) where ψu,v(t) := P[Yv < t and wu,v ≥ α(t) · cu]
for t ∈ [0, 1]. If we now apply Lemma 3.7, and additionally make use of the independence of the
variables (Yv)v∈V , then we may conclude that

r(t) = P[Tu ≥ t]

= 1−
∏
v∈V

(1− ψu,v(t) · P[C(u, v)])

= 1−
∏
v∈V

(1− ψu,v(t) · x̃u,v)

for each t ∈ [0, 1].
Thus, since the functions (ψu,v)v∈V are clearly all continuously differentiable on (0, 1), r is

continuously differentiable as well. On the other hand, observe that F is the c.d.f of Tu, so we have
that

E[Nu] =

∫ 1

0
α(t) · cu · dF (t)

=

∫ 1

0
α(t) · cu · F ′(t) dt

= −
∫ 1

0
α(t) · cu · r′(t) dt

Thus,

E[Nu] = −
∫ 1

0
α(t) · cu · r′(t) dt,

and so we may apply integration by parts to get that∫ 1

0
α(t) · cu · r′(t) dt = cu

(
[r(t) · α(t)]1t=0 −

∫ 1

0
r(t) · α′(t) dt

)
= cu

(
(1− 1/e) +

∫ 1

0
r(t) · α′(t) dt

)
.

14Ehsani et al. [17] and Gamlath et al. [21] provide a utility/revenue interpretation of these variables.
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To conclude,

E[Nu] = cu

(
(1− 1/e) +

∫ 1

0
r(t) · α′(t) dt

)
. (3.8)

Let us now focus on lower bounding
∑

v∈V E[Mu,v]. First observe that if 0 ≤ t ≤ 1 satisfies
wu,v ≥ α(t) · cu, then

E[Mu,v |Yv = t] = pu,v x̃u,v · (wu,v − α(t) · cu) · P[Tu ≥ t |Yv = t],

as v is matched to u with probability pu,v x̃u,v, given u is unmatched at time t. Moreover, if
0 ≤ t ≤ 1 satisfies wu,v < α(t) · cu, then E[Mu,v |Yv = t] = 0. Thus, for all 0 ≤ t ≤ 1,

E[Mu,v |Yv = t] ≥ pu,v x̃u,v(wu,v − α(t) · cu) · P[Tu ≥ t |Yv = t]. (3.9)

On the other hand, it is clear that P[Tu ≥ t |Yv = t] ≥ P[Tu ≥ t]. Thus, after applying (3.9)
and observing r(t) = P[Tu ≥ t], we get that∑

v∈v
E[Mu,v |Yv = t] ≥

∑
v∈V

pu,v x̃u,v · (wu,v − α(t) · cu) · r(t)

=

(
cu − α(t) · cu ·

∑
v∈V

pu,v x̃u,v

)
· r(t).

Now, we know that
∑

v∈V pu,v x̃u,v ≤ 1 by constraint (2.8) of LP-new. Thus,∑
v∈v

E[Mu,v |Yv = t] ≥ cu · (1− α(t)) · r(t),

and so since the random variables (Yv)v∈V are uniformly distributed, we get that

∑
v∈v

E[Mu,v] ≥ cu ·
∫ 1

0
(1− α(t)) · r(t) dt.

By combining this equation with (3.8), it follows that

E[Nu] +
∑
v∈v

E[Mu,v] ≥ cu ·
(

(1− 1/e) +

∫ 1

0
r(t) · α′(t) dt

)
+ cu ·

∫ 1

0
(1− α(t)) · r(t) dt

= cu · (1− 1/e) + cu

∫ 1

0
r(t) · (1− α(t) + α′(t)) dt

= (1− 1/e) · cu,

as 1− α(t) + α′(t) = 0 for all t ∈ [0, 1].
As this argument holds for each u ∈ U , the proof is complete.

4 Online Stochastic Matching in the Known I.I.D. Model

In this section, we consider a generalization of the classical known i.i.d. matching problem (in-
troduced in Feldman et al. [19]) to the stochastic matching setting (as first studied in Bansal et
al. [6]). Once we review the relevant framework and terminology, we introduce an online probing
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algorithm which achieves a competitive ratio of 1 − 1/e for arbitrary patience and edge weights,
thereby proving Theorem 4.3. Our algorithm generalizes the algorithm of [10] to arbitrary patience,
in which Brubach et al. proved a competitive ratio of 1 − 1/e for the unit patience setting. This
allows us to improve upon the previously best known competitive ratio of 0.46 for the case of
arbitrary patience, as presented in [11].

We again note that our positive results from Section 3 do not seem to immediately imply the
same positive results in the known i.i.d. stochastic matching problem, as we explain in more detail
after reviewing the model.

4.1 The Known I.I.D. Stochastic Setting

Let us suppose that G = (U, V,E) is a stochastic graph with edges weights (we)e∈E , edge proba-
bilities (pe)e∈E and offline patience values (`v)v∈V associated with it. In the known i.i.d. setting,
we refer to G as a stochastic type graph (or type graph when clear), and the vertices of V as
the type nodes of G.

Now, fix a parameter n ≥ 1 (which need not be equal to |V |), indicating the number of rounds or
arrivals to occur. Moreover, consider r = (rv)v∈V , where rv > 0 for each v ∈ V , and

∑
v∈V rv = n.

We refer to rv as the (fractional) arrival rate of type node v ∈ V . An input to the stochastic
known i.i.d. matching problem then consists of the tuple (G, r, n), which we refer to as a known
i.i.d. input with fractional arrival rates.

An online probing algorithm A is given access to (G, r, n) as part of its input. For each
t = 1, . . . , n, vertex arrival vt ∈ V is drawn independently in round t using the distribution r/n, at
which point vt is said to be of type v ∈ V , provided vt = v. We emphasize that the edge states of
vt are statistically independent from the edge states of all the previously drawn nodes (even if vt is
not the first vertex of type v to arrive).

Using all past available information regarding the outcomes of the probes involving v1, . . . , vt−1,
together with the edge probabilities (pu,vt)u∈U , weights (wu,vt)u∈U and patience value `vt , A may
probe up to `vt edges adjacent to vt. The algorithm is again restricted by commitment, in that vt
may only be matched to the first u ∈ U for which the probe to (u, vt) confirms that the edge is
active.

Observe that while the type graph (G, r, n) is passed as input to A, the stochastic graph A
actually executes on is in fact randomly generated, and unknown to A. Let us denote this (random)
stochastic graph by Ĝ = (U, V̂ , Ê). Here, V̂ consists of the random arrival nodes of V presented to
the algorithm, and Ê includes all the relevant edges between U and V̂ (since the same node from
V can arrive multiple times, V̂ and Ê are multisets). We assume that Ĝ also encodes all the edge
weights, probabilities and patience values induced from the arrival nodes of V̂ .

We refer to Ĝ as the instantiated stochastic graph or simply the instantiated graph
when clear. Observe that since (G, r, n) encodes the distribution of Ĝ, we say that Ĝ is distributed
according to the known i.i.d. input (G, r, n), which we denote by Ĝ ∼ (G, r, n).

Denote val(A(Ĝ)) as the value of the matching A constructs when passed the instantiated graph
Ĝ. Our performance measure for A then involves averaging over all the possible instantiations of
Ĝ. Specifically, we wish to maximize

E[val(A(Ĝ))],

where the expectation is over the randomness in drawing Ĝ from (G, r, n), together with the
inherent randomness in the states of the edges of Ĝ, as well as any randomized decisions A may
make.

For each randomly drawn Ĝ ∼ (G, r, n), we can consider the committal benchmark, and the
evaluation it takes on Ĝ, namely OPT(Ĝ). This yields a committal probing strategy, which we
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refer to as the committal benchmark for the stochastic type graph (G, r, n). We denote the
expected performance of the committal benchmark by OPT(G, r, n). Observe that

OPT(G, r, n) = E[OPT(Ĝ)],

where the expectation is over the randomness in generating Ĝ. We can define the non-committal
benchmark for the stochastic type graph (G, r, n) analogously, which we denote by OPTnon(G, r, n).

The standard in the literature (see [3, 6, 11]) is to prove competitive ratios against the committal
benchmark. More precisely, the goal is to find an online probing algorithm A for which the (strict)
competitive ratio

inf
(G,r,n)

E[val(A(Ĝ))]

OPT(G, r, n)

is as close to 1 as possible.
Before continuing, we emphasize that there does not seem to be an obvious reduction from

the known i.i.d. stochastic matching problem to the known stochastic matching problem with
ROM arrivals. Specifically, suppose we are presented an online probing algorithm A which achieves
competitive ratio 0 < c ≤ 1 in the known stochastic matching problem with ROM arrivals. In
this case, let us now fix a stochastic type graph (G, r, n), and imagine trying to use A to design a
probing algorithm for the i.i.d. matching problem. If we consider the instantiated graph Ĝ drawn
from (G, r, n), then the online vertices of Ĝ will indeed be presented to A in a random order.
That being said, in order for A to attain to attain a competitive guarantee of c ·OPT(Ĝ), it needs
to be presented the entire description of Ĝ as well. However, an online probing algorithm in the
known i.i.d. setting is only given access to the type graph, (G, r, n), not the instantiated graph Ĝ.
Moreover, Ĝ = (U, V̂ , Ê) may be a very different stochastic graph than G; for instance, type node
v ∈ V may appear multiple times in V̂ , or perhaps not at all. As such, it is unclear how to modify
A to obtain the same competitive ratio of c against OPT(G, r, n).

4.2 Defining an LP Relaxation

Given an input (G, r, n) to the known i.i.d. matching problem, it is challenging to directly compare
the performance of an online probing algorithm to that of the committal benchmark; that is, the
value OPT(G, r, n). Instead, we once again focus on LP based approaches for upper bounding this
quantity.

Let us now review the LP introduced in [6, 11], as defined for (G, r, n), specialized to the case
of one-sided patience.

maximize
∑

u∈V,v∈V
wu,v pu,v yu,v (LP-std-iid)

subject to
∑
v∈V

pu,v yu,v ≤ 1 ∀u ∈ U (4.1)∑
u∈U

pu,v yu,v ≤ rv ∀v ∈ V (4.2)∑
u∈U

yu,v ≤ rv · `v ∀v ∈ V (4.3)

0 ≤ yu,v ≤ rv ∀u ∈ U, v ∈ V (4.4)
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If LPOPTstd−iid(G, r, n) denotes the value of the optimal solution to LP-std-iid, then it was
shown by Bansal et al. [6] to be a relaxation of the committal benchmark; that is,

OPT(G, r, n) ≤ LPOPTstd−iid(G, r, n).

Unfortunately, LP-std-iid suffers the same issues as LP-std, as Example 2.1 continues to apply, as
can be seen by setting rv = 1 for v ∈ V and n = |V |. As such, we introduce a new LP for (G, r, n),
using the same ideas as in the derivation of LP-new. The essential difference in this LP being that
we incorporate the arrival rates of (G, r, n), as can be seen below in constraint (4.6).

maximize
∑
v∈V

∑
u∈U(≤`v)

 |u|∑
i=1

wui,v g
i
v(u)

 yv(u) (LP-new-iid)

subject to
∑
v∈V

`v∑
i=1

∑
u∗∈U(≤`v)

u∗i =u

giv(u
∗) yv(u

∗) ≤ 1 ∀u ∈ U (4.5)

∑
u∈U(≤`v)

yv(u) ≤ rv ∀v ∈ V, (4.6)

yv(u) ≥ 0 ∀v ∈ V,u ∈ U (≤`v) (4.7)

Given a feasible solution to LP-new-iid, say (yv(u)v∈V,u∈U(≤`v) we define the induced edge vari-
ables, hereby denoted (ỹu,v)u∈U,v∈V , as in the case of LP-new; that is,

ỹu,v :=

`v∑
i=1

∑
u∗∈U(≤`v):

u∗i =u

giv(u
∗) yv(u)

pu,v
.

Let us now denote LPOPTnew−iid(G, r, n) as the value of an optimal solution to LP-new-
iid. We claim that LP-new-iid is a relaxation of the committal benchmark. This follows from
a conditioning argument involving an application of Theorem 2.2 to Ĝ ∼ (G, r, n), so we defer
the details to Appendix F. We remark that the techniques used in this proof constitute a general
method for extending LP relaxations to the stochastic known i.i.d. setting, and so they may be of
independent interest.

Lemma 4.1. For any input (G, r, n) of the known i.i.d stochastic matching problem,

OPT(G, r, n) ≤ LPOPTnew−iid(G, r, n).

The procedure for solving LP-new-iid efficiently follows the same approach as that of LP-new,
so we defer the details to Appendix B.

4.3 Defining a Known I.I.D. Probing Algorithm

We now consider an online probing algorithm for the known i.i.d. stochastic matching problem,
which generalizes the unit patience probing algorithm of Brubach et al. [10].

Given (G, r, n), suppose that we consider a feasible solution to LP-new-iid, which we denote by
(yv(u))v∈V,u∈U(≤`v) . If we fix v ∈ V , then the values (yv(u)/rv)u∈U(≤`v) satisfy,∑

u∈U(≤`v)

yv(u)

rv
≤ 1, (4.8)
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as a result of constraint (4.6). As such, given the input (U, (yv(u)/rv)u∈U(≤`v) , v) for a fixed v ∈ V ,
we can execute VertexProbe. In particular, we can apply Lemma 2.3 in the known i.i.d. setting
to get the following lemma:

Lemma 4.2. Fix u ∈ U and v ∈ V . For each t = 1, . . . , n, denote C(u, vt) as the event in which
Algorithm 6 commits vt to u in one of its probes. In this case,

P[C(u, vt) | vt = v] =
ỹu,v pu,v
rv

,

where (ỹu,v)u∈U,v∈V are the induced edge variables of the solution (yv(u))v∈V,u∈U(≤`v).

Proof. When Algorithm 6 processes vt, it executes VertexProbe(U, (yvt(u
∗)/rvt)u∈U(≤`vt )

, vt). If
we condition on the event in which vt = v, then this corresponds to executing VertexProbe using
the input (U, (yv(u

∗)/rv)u∈U(≤`v) , v). As a result, an application of Lemma 2.3 ensures that

P[C(u, vt) | vt = v] =
ỹu,v pu,v
rv

,

thus completing the proof.

We now adapt Algorithm 3 to the known i.i.d. setting, leading to the following algorithm:

Algorithm 6 Known I.I.D.

Input G = (U, V,E), an arbitrary stochastic type graph.
Input n ≥ 1, the number of arriving vertices, and the arrivals rates of V , r = (rv)v∈V .

1: Set M← ∅.
2: Solve LP-new-iid, and find an optimal solution (yv(u))v∈V,u∈U(≤`v) .
3: for t = 1, . . . , n do
4: Let vt be the vertex that arrives at time t.
5: Identify the type of vt in V , and the corresponding values (yvt(u

∗)/rvt)u∗∈U(≤`vt )

6: Set (ut, vt)← VertexProbe(U, (yvt(u
∗)/rvt)u∗∈U(≤`vt )

, vt).
7: if (ut, vt) 6= ∅ and ut is unmatched then
8: Set M(vt) = ut.
9: end if

10: end for
11: Return M.

Theorem 4.3. Algorithm 6 achieves a competitive ratio of 1−1/e against the committal benchmark,
for arbitrary edge weights and patience values.

Proof. Let us fix u ∈ U and v ∈ V , where G = (U, V,E). While Algorithm 6 executes on the
instantiated graph Ĝ = (U, V̂ , Ê), let us say that the algorithm matches the edge e = (u, v) ∈ E,
provided there exists some 1 ≤ t ≤ n for which vt = v and M(vt) = u (here v1, . . . , vn are the
ordered arrivals of the vertices of V̂ ). Observe then that

E[val(M)] =
∑
e∈E

we P[e is matched].

As such, we focus on lower bounding P[e is matched] for each e ∈ E.
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Observe now that

P[e is matched] =

n∑
t=1

P[M(vt) = u | vt = v] · P[vt = v].

Moreover, if Rt ⊆ U denotes the unmatched vertices of U after vertices v1, . . . , vt−1 arrive, then

P[M(vt) = u | vt = v] = P[C(u, vt) ∩ {u ∈ Rt} | vt = v]

= P[C(u, vt) | vt = v] · P[u ∈ Rt | vt = v],

as the events C(u, vt) and u ∈ Rt are conditionally independent given vt = v, since the algorithm
decides upon the probes of vt independently from those of v1, . . . , vt−1.

Moreover, the event u ∈ Rt can be determined from the probes of the vertices v1, . . . , vt−1, and
is therefore independent from the event vt = v. Thus,

P[M(vt) = u | vt = v] = P[C(u, vt) | vt = v] · P[u ∈ Rt],

and so
P[M(vt) = u | vt = v] = ỹu,v pu,v P[u ∈ Rt],

after applying Lemma 4.2.
It suffices to lower bound P[u ∈ Rt]. Observe that for each k = 1, . . . , n− 1,

P[u ∈ Rk+1] = P[∩kj=1¬C(u, vj)] = P[¬C(u, vk)] · P[u ∈ Rk]

as the probes of vk are drawn independently from those of v1, . . . , vk−1.
Yet,

P[C(u, vk)] =
∑
v∈V

P[C(u, vk) | vk = v] · P[vk = v]

=
∑
v∈V

ỹu,v pu,v
rv

rv
n

=
∑
v∈V

ỹu,v pu,v
n

≤ 1

n
,

by Lemma 4.2 and the constraints of LP-new-iid. Thus,

P[u ∈ Rt] ≥
(

1− 1

n

)t−1

(4.9)

after applying the above recursion.
As a result,

P[M(vt) = u | vt = v] ≥ pu,v ỹu,v
(

1− 1

n

)t−1

,

and so

P[(u, v) is matched] =
n∑
t=1

P[M(vt) = u | vt = v] · P[vt = v]
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≥
n∑
t=1

ỹu,v pu,v
rv

(
1− 1

n

)t−1 rv
n

=
n∑
t=1

(
1− 1

n

)t−1 ỹu,v pu,v
n

.

Now,
∑n

t=1
1
n

(
1− 1

n

)t−1 ≥ 1− 1
e , so

P[(u, v) is matched] ≥
(

1− 1

e

)
ỹu,v pu,v

for each u ∈ U, v ∈ V . As such

E[val(M)] ≥
∑

u∈U,v∈V
wu,v ỹu,v pu,v

(
1− 1

e

)
.

Since (yv(u))v∈V,u∈U(≤`v) is an optimum solution to LP-new-iid, the algorithm is 1−1/e competitive
by Lemma 4.1, thus completing the proof.

5 Online Stochastic Matching with ROM Arrivals: The Case of
an Unknown Stochastic Graph

In this section, we consider the unknown stochastic matching problem in the setting of arbitrary
edge weights. Specifically, we employ the LP based techniques of the previous section to design a
randomized probing algorithm which generalizes the approach of Kesselheim et al. [29]. As in [29],
we make the added assumption that the number of vertex arrivals is known to the online probing
algorithm ahead of time. We are then able to prove a best possible asymptotic competitive ratio of
1/e, though unlike the work of Kesselheim et al. [29], our online algorithm requires randomization.

Let us suppose that G = (U, V,E) is a stochastic graph with arbitrary edge weights, probabilities
and patience values. We assume that n := |V |, and that the online nodes of V are denoted v1, . . . , vn,
where the order is generated uniformly at random.

Since G is unknown to us in the current setting, we cannot directly solve LP-new to define a
probing algorithm. As such, we must adjust which LP we attempt to solve.

Let us suppose that S is a non-empty subset of the nodes of V . We can then denote G[S] as
the induced stochastic graph of G on S. This is constructed by taking the induced graph of G
on the partite sets U and S, and restricting the edge weights and probabilities to (pu,s)u∈U,s∈S and
(wu,s)u∈U,s∈S respectively, as well as the patience values to (`s)s∈S .

From now on, denote Vt as the set of first t arrivals of V ; that is, Vt := {v1, . . . , vt}. Moreover,
set Gt := G[Vt], and LPOPTnew(Gt) as the value of an optimum solution to LP-new (this is a
random variable, as Vt is a random subset of V ). The following inequality then holds:

Lemma 5.1. For each t ≥ 1,

E[LPOPTnew(Gt)] ≥
t

n
LPOPTnew(G).

In light of this observation, we design an online probing algorithm which makes use of Vt, the
currently known nodes, to derive an optimum LP solution with respect to Gt. As such, each time
an online node arrives, we must compute an optimum solution for the LP associated to Gt, distinct
from the solution computed for that of Gt−1.
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Algorithm 7 Unknown Stochastic Graph ROM

Input U , n := |V |, and 0 ≤ α ≤ 1.
1: Set M← ∅.
2: Set G0 = (U, ∅, ∅)
3: for t = 1, . . . , |V | do
4: Input vt, with (wu,vt)u∈U , (pu,vt)u∈U and `vt .
5: Compute Gt, by updating Gt−1 to contain vt and its edges into U , as well its edge weights,

probabilities and patience.
6: if t < |V |α then
7: Pass on vt.
8: else
9: Solve LP-new for Gt and find an optimum solution.

10: Encode this (new) optimum solution as (xv(u))v∈Vt,u∈U(≤`v) .
11: Process vt, and set (ut, vt)← VertexProbe(Gt, (xvt(u))

u∈U(≤`vt )
, vt).

12: if (ut, vt) 6= ∅ and ut is unmatched then
13: Set M(vt) = ut.
14: end if
15: end if
16: end for
17: Return M.

Theorem 5.2. When α is set to 1/e, Algorithm 7 achieves an asymptotic competitive ratio15 of
1/e against the committal benchmark.

Proof. Observe that by definition, Algorithm 7 does not probe any of the neighbours of vt for
1 ≤ t ≤ αn − 1. As such, these online vertices do not contribute to the matching returned by the
algorithm, and so we hereby fix t and assume that t ≥ αn. We emphasize that the value of xv(u)
corresponds to this fixed value of t, for each v ∈ Vt and u ∈ U (≤`v).

Let us now define et := (ut, vt), where ut is the vertex u ∈ U which vt commits to (recall that
(ut, vt) = ∅ if vt remains uncommitted after its probes). We now define the random variable

val(et) := wet1[et 6=∅],

which indicates the weight of the edge vt commits to (which is zero, provided vt remains uncom-
mitted).

For each u ∈ U , denote C(u, vt) as the event in which vt commits to u. Let us now condition
on the random subset Vt, as well as the random vertex vt. In this case,

E[val(et) |Vt, vt] =
∑
u∈U

wu,vt P[C(u, vt) |Vt, vt].

Observe however that once we condition on Vt and vt, Algorithm 7 corresponds to executing Ver-
texProbe on the instance (Gt, (xvt(u))

u∈U(≤`vt )
, vt). Thus, Lemma 2.3 implies that

P[C(u, vt) |Vt, vt] = pu,vt x̃u,vt ,

where x̃u,vt is the induced edge variable associated with the solution (xv(u))v∈Vt,u∈U(`v) . As such,

E[val(et) |Vt, vt] =
∑
u∈U

wu,vt pu,vt x̃u,vt .

15The asymptotic competitive ratio for an online probing algorithm A in the ROM setting is defined as
lim infOPT(G)→∞

E[val(A(G))]
OPT(G)

.

28



On the other hand, if we condition on solely Vt, then vt remains distributed uniformly at random
amongst the vertices of Vt. Moreover, once we condition on Vt, the graph Gt is determined, and
thus so are the values (xv(u))v∈Vt,u∈U(`v) of LP-new. These observations together imply that

E[wu,vt pu,vt x̃u,vt |Vt] =

∑
v∈Vt wu,v pu,v x̃u,v

t
(5.1)

for each u ∈ U and αn ≤ t ≤ n.
If we now take expectation over vt, then using the law of iterated expectations,

E[val(et) |Vt] = E[E[val(et) |Vt, vt] |Vt]

= E

[∑
u∈U

wu,vt pu,vt x̃u,vt |Vt

]
=
∑
u∈U

E[wu,vt pu,vt x̃u,vt |Vt]

=
∑
u∈U

∑
v∈Vt

wu,vpu,v x̃u,v
t

,

where the final equation follows from (5.1).
Observe however that

LPOPTnew(Gt) =
∑
v∈Vt

∑
u∈U

wu,vt pu,vt x̃u,vt ,

as (xv(u))
v∈Vt,u∈U(≤`vt )

is an optimum solution to LP-new for Gt. As a result,

E[val(et) |Vt] =
LPOPTnew(Gt)

t
,

and so

E[val(et)] =
E[LPOPTnew(Gt)]

t
,

after taking taking expectation over Vt.
On the other hand, Lemma 5.1 implies that

E[LPOPTnew(Gt)]

t
≥ LPOPTnew(G)

n
.

Thus,

E[val(et)] ≥
LPOPTnew(G)

n
, (5.2)

provided αn ≤ t ≤ n.
Let us now consider the matching M returned by the algorithm, as well as its value, which we

denote by val(M). For each αn ≤ t ≤ n, define Rt as the remaining vertices of U when vertex vt
arrives (these are the unmatched vertices of U , after v1, . . . , vt−1 are processed). With this notation,
we have that

val(M) =

n∑
t=αn

val(ut, vt) 1[ut∈Rt]. (5.3)

Moreover, we have the following lemma, whose proof we defer until afterwards.
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Lemma 5.3. If f(t, n) := αn/(t− 1), then

P[ut ∈ Rt |Vt, vt] ≥ f(t, n),

for t ≥ αn.

Now, val(ut, vt) and {ut ∈ Rt} are conditionally independent given (Vt, vt), as the probes of vt
are independent from those of v1, . . . , vt−1. Thus,

E[val(ut, vt) 1[ut∈Rt] |Vt, vt] = E[val(ut, vt) |Vt, vt] · P[ut ∈ Rt |Vt, vt].

Moreover, for each t ≥ αn, Lemma 5.3 implies that

E[val(ut, vt) |Vt, vt] · P[ut ∈ Rt |Vt, vt] ≥ E[val(ut, vt) |Vt, vt] f(t, n),

and so
E[val(ut, vt) 1[ut∈Rt] |Vt, vt] ≥ E[val(ut, vt) |Vt, vt] f(t, n).

Thus, by applying the law of iterated expectations,

E[val(ut, vt)1[ut∈Rt]] = E[E[val(ut, vt) 1[ut∈Rt] |Vt, vt] ]

≥ E[E[val(ut, vt) |Vt, vt] f(t, n) ]

= f(t, n)E[val(ut, vt)],

for each t ≥ αn.
As a result, using (5.3), we get that

E[val(M)] =
n∑

t=αn

E[val(ut, vt) 1[ut∈Rt]]

≥
n∑

t=αn

f(t, n)E[val(ut, vt)].

We may thus conclude that

E[val(M)] ≥ LPOPTnew(G)
n∑

t=αn

f(t, n)

n
,

after applying (5.2).
As
∑n

t=αn f(t, n)/n = (1 + o(1))1/e when α = 1/e (where the asymptotics are as n→∞), the
result holds.

In order to complete the proof of Theorem 5.2, we must prove Lemma 5.3. Up until now,
when Algorithm 7 solves LP-new for Gt, we have been able to notate the induced edge variables
as (x̃u,v)u∈U,v∈Vt without ambiguity, despite the dependence on αn ≤ t ≤ n. In the proof below, it

is necessary to be more explicit in our notation, so we denote x̃u,v as x̃
(t)
u,v to indicate that we are

working with an edge variable from the relevant LP solution involving Gt.

Proof of Lemma 5.3. In what follows, let us assume that αn ≤ t ≤ n is fixed. We wish to prove
that for each u ∈ U ,

P[u ∈ Rt |Vt, vt] ≥
αn

t− 1
.
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As such, we must condition on (Vt, vt) throughout the remainder of the proof. To simplify the argu-
ment, we abuse notation slightly and remove (Vt, vt) from the subsequent probability computations,
though it is understood to implicitly appear.

Given arriving node vj for j = 1, . . . , n, once again denote C(u, vj) as the event in which vj
commits to u ∈ U . As Rt denotes the unmatched nodes after the vertices v1, . . . , vt−1 are processed
by Algorithm 7, observe that u ∈ Rt if and only if ¬C(u, vj) occurs for each j = 1, . . . , t− 1. As a
result,

P[u ∈ Rt] = P[∩t−1
j=1¬C(u, vj)].

We therefore focus on lower bounding P[∩t−1
j=1¬C(u, vj)] in order to prove the lemma.

First observe that for j = 1, . . . , αn−1, the algorithm passes on all the trials of vj by definition.
As such, we may focus on lower bounding

P[∩t−1
j=αn¬C(u, vj)],

which depends only on the vertices of Vt−1 \Vαn−1. We denote t̄ := t−αn as the number of vertices
within this set.

Let us first consider the vertex vt−1, and the induced edge variable x̃
(t−1)
u,v for each v ∈ Vt−1.

Observe that after applying Lemma 2.3,

P[C(u, vt−1)] =
∑

v∈Vt−1

P[C(u, vt−1) | vt−1 = v] · P[vt−1 = v]

=
1

t− 1

∑
v∈Vt−1

x̃(t−1)
u,v pu,v,

as once we condition on (Vt, vt), vt−1 is uniformly distributed amongst Vt−1. On the other hand,

the values (x̃
(t−1)
u,v )u∈U,v∈Vt−1 are derived from a solution to LP-new for Gt−1, and so∑

v∈Vt−1

x̃(t−1)
u,v pu,v ≤ 1.

We therefore get that

P[C(u, vt−1)] ≤ 1

t− 1
.

Similarly, if we fix 1 ≤ k ≤ t̄, then we can generalize the above argument by conditioning
on the identities of all the vertices preceding vt−k, as well as the probes they make; that is,
(ut−1, vt−1), . . . , (ut−(k−1), vt−(k−1)) (in addition to Vt and vt as always).

In order to simplify the resulting indices, let us reorder the vertices of Vt−1 \Vαn−1. Specifically,
define v̄k := vt−k, ūk := ut−k and ēk := et−k for k = 1, . . . , t̄. With this notation, we denote Hk as
encoding the information available based on the vertices v̄1, . . . , v̄k and the edges they (potentially)
committed to, namely ē1, . . . , ēk

16. By convention, we define H0 as encoding the information
regarding Vt and vt.

An analogous computation to the above case then implies that

P[C(u, v̄k) |Hk−1] =
∑

v∈Vt−k

x̃(t−k)
u,v pu,v P[v̄k = v] ≤ 1

t− k
,

for each k = 1, . . . , t̄, where x̃
(t−k)
u,v is the edge variable for v ∈ Vt−k.

16Formally, Hk is the sigma-algebra generated from Vt, vt and ē1, . . . , ēk.
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Observe now that in each step, we condition on strictly more information; that is, Hk−1 ⊆ Hk
for each k = 2, . . . , t̄. On the other hand, observe that if we condition on Hk−1 for 1 ≤ k ≤ t̄ − 1,
then the event C(u, v̄j) can be determined from Hk−1 for each 1 ≤ j ≤ k − 1.

Using these observations, for 1 ≤ k ≤ t̄, the following recursion holds:

P[∩kj=1¬C(u, v̄j)] = E

E

 k∏
j=1

1[¬C(u,v̄j)] |Hk−1


= E

 k−1∏
j=1

1[¬C(u,v̄j)] P[¬C(v̄k, u) |Hk−1]


≥
(

1− 1

t− k

)
P[∩k−1

j=1¬C(u, v̄j)]

It follows that if k = t− αn, then applying the above recursion implies that

P[∩t−1
j=αn¬C(u, vj)] ≥

t−αn∏
k=1

(
1− 1

t− k

)
.

Thus, after cancelling the pairwise products,

P[∩t−1
j=αn¬C(u, vj)] ≥

αn

t− 1
,

and so
P[u ∈ Rt] = P[∩t−1

j=αn¬C(u, vj)] ≥
αn

t− 1

thereby completing the argument.

6 Conclusion and Open Problems

We discussed the online stochastic matching problem in various settings and gave new and improved
results with respect to a new LP relaxation which upper bounds the performance of the committal
benchmark. We use our LP to create fractional solutions which can then be rounded to determine
a non-adaptive sequence of edge probes. Our LP has a better stochasticity gap, as compared to
the linear programs discussed in previous papers. We considered the ROM input model in the
unknown stochastic graph setting, and adversarial, ROM and i.i.d. input models in the known
stochastic graph setting. All of our results hold for arbitrary patience values and we consider both
offline vertex weights and the more general edge weights in determining the stochastic reward.

Our results leave unsettled many interesting questions. We can view many open problems
in terms of one basic issue: When (if ever) is there a provable difference between the classical
online bipartite matching problem and the corresponding stochastic matching problem? What
negative (i.e., inapproximation) results (if any) can be strengthened beyond what is known in the
corresponding classical settings?

One of the questions we have left open is whether our competitive ratios can be seen to hold
against the non-committal benchmark, or whether we must allow them more power. For instance,
if our online probing algorithms execute without needing to respect commitment, is it clear that
a competitive ratio of 1 − 1/e is attainable against the non-committal benchmark? What if we
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enforce commitment, but allow our algorithms to execute adaptively? We believe that these open
questions highlight the difficulty of having to design probing algorithms which work for arbitrary
patience constraints.

Another direction is to improve the linear program for the case of unit patience since a stochas-
ticity gap of 1 − 1/e holds here, and our linear program is equivalent to those linear programs
discussed in earlier papers, when restricted to unit patience. This seems to be a bottleneck in
proving positive results in any model. It would also be interesting to look at other methods to
prove competitive ratios without using linear programs at all (i.e., by combinatorial methods). Or
when (if ever) is 1− 1/e an optimal competitive ratio?

We are also interested in whether our results for stochastic matching can be extended so that
offline, as well as online vertices, have patience constraints. Another extension would be to general-
ize the patience constraints so that now online vertices have budgets, and edges have non-uniform
probing costs. The constraint would be that the cost of probes adjacent to an online vertex is lim-
ited to its budget. And finally, we are interested in whether we can obtain improved competitive
ratios, for special cases, such as when the edge probabilities are decomposable or vanishingly small
as studied in Goyal and Udwani [24].
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A Relaxing the Committal Benchmark

In this section, we consider the committal benchmark, as defined in Section 2. In particular, we
prove that LP-new is a relaxation of the committal benchmark (Theorem 2.2). It is convenient to
extend our definition of an online probing algorithm to the offline setting (as has previously been
implicitly suggested by the committal and non-committal benchmarks).

Suppose that we are given an arbitrary stochastic graph G = (U, V,E). We define an (offline)
probing algorithm as an algorithm which adaptively reveals the edge states G, while respecting
the patience values of G. Notably, we do not restrict a probing algorithm to any specific ordering
of the edges of G. The goal of a probing algorithm is again to return a matching of active edges of
large expected weight, though it must respect commitment. That is, it has the property that
if it makes a probe which yields an active edge, then this edge must be included in the current
matching (if possible). The value of the committal benchmark on G, denoted OPT(G), simply
corresponds to the largest expected value a probing algorithm can attain on G.

Let us now restate LP-new for convenience:

maximize
∑
v∈V

∑
u∈U(≤`v)

 |u|∑
i=1

wui,v g
i
v(u)

 · xv(u) (LP-new)

subject to
∑
v∈V

`v∑
i=1

∑
u∗∈U(≤`v):

u∗i =u

giv(u
∗) · xv(u∗) ≤ 1 ∀u ∈ U (A.1)
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∑
u∈U(≤`v)

xv(u) ≤ 1 ∀v ∈ V, (A.2)

xv(u) ≥ 0 ∀v ∈ V,u ∈ U (≤`v) (A.3)

In order to prove that LP-new is a relaxation of the committal benchmark, we must show that
OPT(G) ≤ LPOPTnew(G). Observe that in the above terminology, this is equivalent to showing
that for each (offline) probing algorithm A, E[val(A(G))] ≤ LPOPTnew(G), where A(G) is the
matching returned by A.

Suppose now that we define xv(u) to be the probability that A probes the edges (ui, v)
|u|
i=1 in

order, where v ∈ V and u ∈ U (≤`v). Let us suppose that A has the following property:

1. For each v ∈ V , the edge probes involving v are made independently of the edge states
(st(u, v))u∈U .

Observe that by using (1), the expected value of the edge assigned to v is

∑
u∈U(≤`v)

 |u|∑
i=1

wui,v · giv(u)

 · xv(u).

By additionally arguing that (xv(u))v∈V,u∈U(≤`v is a feasible solution to LP-new, we can then upper
bound E[val(A(G)] by LPOPTnew(G).

That being said, since we make no assumption on how A moves between edge probes, it is
not clear that we can assume it satisfies (1) without loss of generality. As such, the natural
interpretation of the variables of LP-new does not seem to easily lend itself to a proof of Theorem
2.2.

In order to get around these issues, we introduce a new stochastic probing problem for a
stochastic graph G = (U, V,E), known as the relaxed stochastic matching problem. This
problem is closely related to the stochastic matching problem, however it places fewer restrictions
on how many times each vertex u ∈ U may be matched by a probing algorithm. As such, it has
an optimum solution which upper bounds OPT(G). Interestingly, LP-new exactly encodes this
relaxed matching problem, which implies Theorem 2.2 as a corollary.

We now introduce the definition of a relaxed probing algorithm, described in the following
way:

A relaxed probing algorithm probes edges of G, while respecting the patience constraints of the
online nodes of V . It is allowed to arbitrarily move between the edges of G, and it must returnM,
a subset of its probes which yielded active edges. The goal of the relaxed probing algorithm is to
maximize the expected weight of M, while ensuring that the following properties are satisfied:

1. Each v ∈ V appears in at most one edge of M.

2. For each u ∈ U , the expected number of edges which contain u is at most one.

We refer to M as a one-sided matching for the online nodes. In a slight abuse of terminology,
we say that a relaxed probing algorithm matches the edge e, provided e is included in M.

A relaxed probing algorithm must respect commitment. That is, it has the property that if
a probe to e = (u, v) yields an active edge, then the edge is included inM (provided v is currently
not in M). Observe that this requires the relaxed probing algorithm to include e, even if u is
already adjacent to some element of M.
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We define the relaxed benchmark as the optimum relaxed probing algorithm on G, and
denote OPTrel(G) as the value this benchmark attains G. Observe that by definition,

OPT(G) ≤ OPTrel(G),

where OPT(G) is the value of the committal benchmark on G.
Finally, we say that a relaxed probing algorithm is non-adaptive, provided its edge probes are

statistically independent from the edge states of G; that is, the random variables (st(e))e∈E . We
emphasize that this is equivalent to specifying an ordering λ on a subset of E, where each vertex
v ∈ V appears in at most `v edges of λ. Once λ is generated (potentially using randomness), the
edges specified by λ are probed in order, and an edge is added to the matching, provided its online
node is unmatched.

Unlike the committal benchmark, OPTrel(G) can be attained by a non-adaptive relaxed probing
algorithm.

Theorem A.1. There exists a relaxed probing algorithm which is non-adaptive and attains value
OPTrel(G) in expectation.

We defer the proof of Theorem A.1 for now, and instead show how it allows us to prove Theorem
2.2. In fact, we prove that LP-new encodes the value of the relaxed benchmark exactly, thus
implying Theorem 2.2 since OPT(G) ≤ OPTrel(G).

Theorem A.2. For any stochastic graph G, an optimum solution to LP-new has value equal to
OPTrel(G), the value of the relaxed benchmark on G.

Proof. Suppose we are presented a solution (xv(u))v∈V,u∈U(≤`v) to LP-new. We observe then the
following relaxed probing algorithm:

1. M← ∅.

2. For each v ∈ V , set e← VertexProbe(G, (xv(u))u∈U(≤`v) , v).

3. If e 6= ∅, then let e = (u, v) and set M(v) = u.

4. Return M.

Using Lemma 2.3, it is clear that

E[val(M)] =
∑
v∈V

∑
u∈U(≤`v)

 |u|∑
i=1

wui,v g
i
v(u)

 · xv(u).

Moreover, each vertex u ∈ U is matched by M at most once in expectation, as a consequence of
(A.1).

In order to complete the proof, it remains to show that if A is an optimum relaxed probing
algorithm, then there exists a solution to LP-new whose value is equal to E[val(A(G))] (where
A(G) is the one-sided matching returned by A). In fact, by Theorem A.1, we may assume that A
is non-adaptive.

Observe then that for each v ∈ V and u = (u1, . . . , uk) ∈ U (≤`v) with k = |u| we can define

xv(u) := P[A probes the edges (ui, v)ki=1 in order].
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Setting M = A(G) for convenience, observe that if val(M(v)) corresponds to the weight of the
edge assigned to v (which is 0 if no assignment is made), then

E[val(M(v))] =
∑

u∈U(≤`v)

 |u|∑
i=1

wui,v g
i
v(u)

 · xv(u),

as A is non-adaptive.
Moreover, for each u ∈ U ,

∑
v∈V

`v∑
i=1

∑
u∗∈U(≤`v):

u∗i =u

giv(u
∗) · xv(u∗) ≤ 1,

by once again using the non-adaptivity of A. The proof is therefore complete.

A.1 Non-adaptivity in the Relaxed Stochastic Matching Problem

We now argue that in the relaxed stochastic matching problem, the relaxed benchmark does not
require adaptivity. Our approach is to first generalize the LP used by Gamlath et al. [21] to the
case of arbitrary patience. In doing so, we argue that this generalized LP also encodes the relaxed
stochastic matching problem. Moreover, given an optimum solution to this LP, we can employ the
techniques of Gamlath et al. [21] and Costello et al. [13] to recover an optimum probing algorithm
which is non-adaptive. These observations immediately imply Theorem A.1, which allows us to
complete the proof of Theorem 2.2.

Suppose that G = (U, V,E) is an arbitrary stochastic graph. For each S ⊆ U and v ∈ V , we
first define

p(S, v) := 1−
∏
u∈S

(1− pu,v),

which corresponds to the probability that an edge between v and S is active. Moreover, for
1 ≤ k ≤ |U |, denote

(
U
k

)
as the collection of subsets of U of size k, and

(
U
≤k
)

= ∪ki=1

(
U
i

)
as the

collection of (non-empty) subsets of U of size no greater than k.
For each v ∈ V and R ∈

(
U
≤`v
)
, we interpret the variable αv(R) as the probability that the

relaxed benchmark probes the edges {v} × R. Moreover, for u ∈ U , we interpret the variable
zu,v(R) as corresponding to the probability that the relaxed probing algorithm probes the edges
{v}×R and matches the edge (u, v). In this way, the edge probability pu,v is implicitly encoded in
this variable.

maximize
∑

u∈U,v∈V

∑
R∈( U

≤`v
)

wu,v · zu,v(R) (LP-rel)

subject to
∑
v∈V

∑
R∈( U

≤`v
)

zu,v(R) ≤ 1 ∀u ∈ U (A.4)

∑
u∈S

zu,v(R) ≤ p(S, v) · αv(R) ∀v ∈ V, R ∈
(
U

≤ `v

)
, S ⊆ R (A.5)∑

R∈( U
≤`v

)

αv(R) ≤ 1 ∀v ∈ V (A.6)
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zu,v(R) = 0 ∀u ∈ U \R, v ∈ V,R ∈
(
U

≤ `v

)
(A.7)

zu,v(R) ≥ 0 ∀u ∈ U, v ∈ V,R ∈
(
U

≤ `v

)
(A.8)

αv(R) ≥ 0 ∀v ∈ V,R ∈
(
U

≤ `v

)
(A.9)

Remark. When G = (U, V,E) has full patience, αv(U) may be set to 1 for each v ∈ V . As a
result, only the zu,v(U) variables become relevant for u ∈ U , and so LP-rel generalizes the LP of
Gamlath et al. in [21] (see (2.7) of Section 2).

If LPOPTrel(G) corresponds to the optimum value of this LP, then this value encodes OPTrel(G)
exactly. Moreover, an optimum solution to LP-rel induces a relaxed probing algorithm which is
non-adaptive:

Theorem A.3. For any stochastic graph G, we have that

LPOPTrel(G) = OPTrel(G).

Moreover, there exists a relaxed probing algorithm which is non-adaptive and optimum, thereby
proving Theorem A.1.

Before proving this theorem, we first state a key result from the work of Gamlath et al. [21],
which helps motivate constraint (A.5) of LP-rel. We mention that an almost identical guarantee is
also proven by Costello et al. in [13].

Theorem A.4 ([21]). Suppose that G = (U, V,E) is a stochastic graph, and v ∈ V and R ⊆ U are
fixed. Assume that there are non-negative values (yu,v)u∈R, such that∑

u∈S
yu,v ≤ p(v, S) (A.10)

for each S ⊆ R. Under these assumptions, there exists a non-adaptive and committal probing
algorithm, say Bv(R), which processes the single online node v while executing on the stochastic
sub-graph G[{v} ∪R]. Moreover, it has the guarantee that

P[Bv(R) matches v to u] = yu,v

for each u ∈ R.

Proof of Theorem A.3. We first argue that the relaxed benchmark corresponds to a solution of
LP-rel. Observe that since the relaxed benchmark respects commitment, we may assume that for
each v ∈ V , if a probe involving v yields an active edge, then v is never probed again.

For each v ∈ V and R ⊆ U , where k := |R| satisfies k ≤ `v, define αv(R) as the probability that
the relaxed benchmark probes the k edges between R and v.

If we now take u ∈ U , then define zu,v(R) as the probability that the relaxed benchmark probes
the edges R×{v}, and matches u to v. For convenience, we also define zu,v as the probability that
the relaxed benchmark matches u to v. We then get that

zu,v =
∑

R∈( U
≤`v

)

zu,v(R)
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for each u ∈ U and v ∈ V . If M corresponds to the one-sided matching returned by the relaxed
benchmark, then observe that

E[val(M)] =
∑

u∈U,v∈V
wu,v · zu,v. (A.11)

We now claim that (zu,v(R))u∈U,v∈V,R∈( U
≤`v

) together with (αv(R))v∈V,R∈( U
≤`v

) corresponds to a

feasible solution to LP-rel. Given v ∈ V , R ⊆ U , and S ⊆ R, we focus on proving that (A.5) holds,
as the other constraints are easily seen to hold. For notational simplicity, we focus on the case of
this constraint when S = R, however the general case follows identically.

Let us define Ev(R) as the event in which the relaxed benchmark probes the edges {v} × R.
Observe now that if the relaxed benchmark matches v to some vertex of R, then one of the edges
of {v} ×R must have been active. As a result,∑

u∈R
zu,v(R) ≤ P[Ev(R) ∩

⋃
u∈R
{st(u, v) = 1}]. (A.12)

On the other hand, we claim that the events Ev(R) and ∪u∈R{st(u, v) = 1} are negatively correlated.
That is,

P[Ev(R) ∩
⋃
u∈R
{st(u, v) = 1}] ≤ P[Ev(R)] · P[∪u∈R{st(u, v) = 1}] = αv(R) · p(v,R), (A.13)

where p(v,R) = 1 −
∏
u∈R(1 − pu,v). To see this, for each i ∈ [`v] define Xi

v as the offline vertex
of the ith edge involving v which is probed by the relaxed benchmark. By convention, if no such
vertex exists, then Xi

v := ∅. Set k = |R|, and define R(k) as the set of k-length tuples of R whose
coordinates are all distinct. Observe that since the relaxed benchmark stops probing edges adjacent
to v as soon as it witnesses an active edge involving v, Ev(R) ∩

⋃
u∈R{st(u, v) = 1} occurs if and

only if there exists some u ∈ R(k) such that

{st(uk, v) = 1 and Xk
v = uk} ∩

k−1⋂
i=1

{Xi
v = ui and st(ui, v) = 0}.

Moreover, for any u ∈ R(k), the relaxed benchmark must decide whether to probe (uk, v) before
observing st(uk, v). Thus,

P[{st(uk, v) = 1 and Xk
v = uk} ∩

k−1⋂
i=1

{Xi
v = ui and st(ui, v) = 0}]

is equal to

puk,v · P[{Xk
v = uk ∩

k−1⋂
i=1

{Xi
v = ui and st(ui, v) = 0}],

which itself is upper bounded by

p(v,R) · P[{Xk
v = uk} ∩

k−1⋂
i=1

{Xi
v = ui and st(ui, v) = 0}].

Thus, (A.13) holds after summing over all u ∈ R(k). As such, combined with (A.12), it follows
that constraint (A.5) must be satisfied. Since the remaining constraints of LP-rel, are easily seen
to hold, we may apply (A.11), to conclude that OPTrel(G) ≤ LPOPTrel(G).
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Let us now suppose that we are presented a solution to LP-rel, which we denote by (zu,v(R))u∈U,v∈V,R∈( U
≤`v

)
and (αv(R))v∈V,R∈( U

≤`v
). Using this solution, we can derive relaxed probing algorithm which returns

a one-sided matching whose expected value is equal to the LP solution’s value.
Let us first fix a vertex v ∈ V and consider the values (αv(R))R∈( U

≤`v
) and (zu,v(R))u∈U,R∈( U

≤`v
),

where αv(R) 6= 0. Observe that if we fix R ⊆ U , 1 ≤ |R| ≤ `v, then the values (zu,v(R)/αv(R))u∈R
satisfy the relevant inequalities of (A.10) thanks to constraint (A.5) of LP-rel. Theorem A.4 thus
guarantees that there exists a committal probing algorithm for G[R ∪ {v}], say Bv(R), such that

P[Bv(R) matches v to u] =
zu,v(R)

αv(R)

for each u ∈ U . Moreover, Bv(R) is non-adaptive; that is, the probes of Bv(R) are statistically
independent from the edge states, (st(u, v))u∈R.

This suggests the following relaxed probing algorithm, which we denote by B:

1. Set M = ∅.

2. For each v ∈ V , pass on v with probability 1−
∑

R∈( U
≤`v

) αv(R)

3. Otherwise, draw P ⊆ U with probability αv(P ).

4. Execute Bv(P ), and match v to whichever vertex of U (if any) v is matched to by Bv(P ).

Observe now that

P[B matches v to u] =
∑

R∈( U
≤`v

)

αv(R) · zu,v(R)

αv(R)
= zu,v,

Thus,

E[val(M)] =
∑

u∈U,v∈V
wu,v · zu,v.

Moreover, if Nu counts the number of vertices of V which match to u, then

E[Nu] =
∑
v∈V

zu,v ≤ 1,

as the values (zu,v)v∈V satisfy (A.4) by assumption.
Finally, we observe that B respects commitment and is non-adaptive.

We remark that LP-rel, coupled with the probing procedure of Theorem A.4, can be used to
construct online probing algorithms with the same competitive guarantees as derived using LP-new
and VertexProbe. That being said, LP-rel does not seem to be poly-time solvable, at least for
arbitrary patience17. Introducing LP-new allows us to derive online probing algorithms which are
poly-time solvable and which do not require appealing to the subroutine involved in Theorem A.4

17If maxv∈V `v is upper bounded by a constant, independent of the size of U , then the LP is solvable using the
separation oracle presented by Gamlath et al. [21]. A similar statement is true if all the patience values are close to
|U |.
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B Solving LP-new Efficiently

In this section, we prove the following result:

Theorem B.1. An optimum solution to LP-new can be found in polynomial time in the size of the
stochastic graph, G = (U, V,E).

In order to prove this claim, it suffices to show that LP-new-dual has a (deterministic) polyno-
mial time separation oracle, as a consequence of how the ellipsoid algorithm [35, 23] executes (see
[40, 2, 30] for applications). As such, we restate the dual of LP-new for convenience:

minimize
∑
u∈U

αu +
∑
v∈V

βv (LP-new-dual)

subject to βv +

|u∗|∑
j=1

gjv(u
∗) · αu∗j ≥

|u∗|∑
j=1

wu∗j ,v · g
j
v(u
∗) ∀v ∈ V,u∗ ∈ U (≤`v) (B.1)

αu ≥ 0 ∀u ∈ U (B.2)

βv ≥ 0 ∀v ∈ V (B.3)

Suppose now that we are presented a particular selection dual variables, say ((αu)u∈U , (βv)v∈V ),
which may or may not be a feasible solution to LP-new-dual. Our separation oracle must determine
efficiently whether these variables satisfy all the constraints of LP-new-dual. In the case in which
the solution is infeasible, the oracle must additionally return a constraint which is violated.

It is clear that we can accomplish this for the non-negativity constraints, so we hereby assume
that αu ≥ 0 and βv ≥ 0 for all u ∈ U and v ∈ V .

Let us now fix a particular v ∈ V in what follows. We wish to determine whether there exists
some u∗ ∈ U (≤`v) such that

βv +

|u∗|∑
j=1

gjv(u
∗) · αu∗j <

|u∗|∑
j=1

wu∗j ,v · g
j
v(u
∗).

To make such a determination, we consider the function φ, where

φ(u∗) :=

|u∗|∑
j=1

(wu∗j ,v − αu∗j ) · gjv(u∗), (B.4)

for u∗ ∈ U (≤`v). Our goal is to verify whether there exists some u∗ ∈ U (≤`v) such that
φ(u∗) > βv. If we can efficiently check this for a fixed v ∈ V , then we can iterate the same
procedure for all v ∈ V , thus yielding a polynomial time separation oracle for LP-new-dual. Thus,
in order to prove Theorem B.1, we only need to prove the following statement:

Proposition B.2. There exists an efficient deterministic algorithm which checks whether there
exists some u∗ ∈ U (≤`v) such that φ(u∗) > βv. Moreover, if a tuple with this property exists, then
this algorithm will return such a tuple in polynomial time.

In [9], Brubach et al. consider the setting in which one is presented non-negative edge weights
(w̄u∗,v)u∗∈U , and the function

ψ(u∗) :=

|u∗|∑
j=1

w̄u∗j ,v · g
j
v(u
∗), (B.5)
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for u∗ ∈ U (≤`v). They show that one can maximize this function in polynomial time using a
deterministic algorithm based on dynamical programming techniques.

Theorem B.3 ([9]). For any v ∈ V with patience `v and non-negative selection of weights,
(w̄u∗,v)u∗∈U , the function ψ = ψ(u∗) in (B.5) can be maximized in polynomial time using a de-
terministic procedure.

We can apply Theorem B.3 to prove Proposition B.2.

Proof of Proposition B.2. Let us first define w̄u,v := wu,v − αu for all u ∈ U . Denote P as those
u ∈ U such that w̄u,v ≥ 0. First note that if P is empty, then clearly φ(u∗) ≤ 0 for all u ∈ U (≤`v),
so since βv ≥ 0 by assumption, there is nothing to prove.

Let us therefore assume that P 6= ∅. Observe then that we can restrict our attention to
those u∗ ∈ U (≤`v) whose entries all lie in P ; namely, P (≤`v). By applying Theorem B.3, we are
guaranteed a deterministic procedure for maximizing φ on P (≤`v) in polynomial time. Let us denote
the outcome of this procedure by umax. Observe then that either

βv ≥ φ(umax) ≥ φ(u∗)

for all u∗ ∈ U (≤`v), or umax satisfies
φ(umax) > βv.

In either case, the procedure satisfies the requirements of Proposition B.2, and so the proof is
complete.

We conclude the section by considering the stochastic known i.i.d. setting. Specifically, consider
a stochastic type graph, say G = (U, V,E), with n arrivals draw from the fractional rates, r =
(rv)v∈V . In this case, we can solve LP-new-iid efficiently by presenting a separation oracle for its
dual. The reduces to the same maximization problem just considered, with the caveat that for a
fixed type node v ∈ V , we compare the maximized value to βv · rv (where βv is the dual variable
associated to v ∈ V ).

C The Non-committal Benchmark

In this section, we extend our definition of a probing algorithm to general (i.e., not necessarily bipar-
tite) stochastic graphs, as well as our definitions of the committal and non-committal benchmarks.
We then review LP-std, and show that it is in fact a relaxation of the non-committal benchmark.
This allows us to also prove that LP-std-iid is a relaxation of the non-committal benchmark, as
defined for the stochastic known i.i.d. matching problem. As a corollary, we argue that many of
the results in the stochastic matching literature hold against this stronger benchmark.

We then discuss LP-new, and discuss the restricted settings in which is it also a relaxation of the
non-committal benchmark (when once again restricted to online stochastic matching problems). In
the case of arbitrary patience values, we show that LP-new is not a relaxation of the non-committal
benchmark, and discuss the limitations of our techniques. In particular, we explain the difficulty in
designing probing algorithms which respect commitment and also attain large competitive ratios
against the non-committal benchmark.
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C.1 Relaxing the Non-committal Benchmark via LP-std

Let us suppose that G = (V,E) is a general stochastic graph with edge weights (we)e∈E , edge
probabilities (pe)e∈E and patience values (`v)v∈V . We emphasize that G need not be bipartite.

An (offline) probing algorithm must satisfy the requirement that most `v probes are made
to the neighbouring edges of v for each v ∈ V . We say that a probing algorithm is committal,
provided it satisfies the following property when constructing its matching: if an edge e ∈ E is
probed, then e = (u, v) must be added to the current matching, provided u and v are currently
unmatched. Alternatively, a probing algorithm is said to be non-committal, provided the match-
ing it constructs is done in the following manner: if the algorithm (adaptively) reveals the edges
B ⊆ E to be active, then an optimum matching constructed from B is returned.

We can also extend our definitions of the committal and non-committal benchmarks to G.
Specifically, the committal benchmark corresponds to the optimum committal probing algorithm,
whose expected value we denote by OPT(G). Similarly, the non-committal benchmark corresponds
to the optimum non-committal probing algorithm, whose expected value we denote by OPTnon(G).

We now generalize LP-std to the non-bipartite case, as originally presented in [6] by Bansal et
al.:

maximize
∑
e∈E

we · pe · xe (LP-std)

subject to
∑
e∈E:
v∈e

xe ≤ `v ∀v ∈ V (C.1)

∑
e∈E:
v∈e

pe · xe ≤ 1 ∀v ∈ V (C.2)

(C.3)

0 ≤ xe ≤ 1 ∀e ∈ E (C.4)

Bansal et al. showed that LP-std is a relaxation of the committal benchmark; that is, OPT(G) ≤
LPOPTstd(G), where LPOPTstd(G) denotes the optimum value of LP-std. We claim that this LP-
std is also a relaxation of the non-committal benchmark:

Theorem C.1. For any (general) stochastic graph G = (V,E), it holds that

OPTnon(G) ≤ LPOPTstd(G).

As a result, if an (offline) probing algorithm attains an approximation ratio of 0 ≤ c ≤ 1 against
LP-std, then it attains this approximation ratio against non-committal benchmark as well. Notably,
this implies that the competitive ratios of the probing algorithms considered in [6, 3, 7] all in fact
hold against the non-committal benchmark.

We can also consider the known i.i.d. setting, in which we are presented a known i.i.d. instance
(G, r, n). In this case, an analogous statement of Theorem C.1 holds regarding LP-std-iid:

Theorem C.2. For any input (G, r, n) of the known i.i.d. stochastic matching problem,

OPTnon(G, r, n) ≤ LPOPTstd−iid(G, r, n).

Since the works of [6, 3, 10, 11] all prove competitive ratios against LP-std-iid, Theorem C.2
implies that these competitive ratios all hold against the non-committal benchmark.
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In the remainder of the section, we prove Theorem C.1, which we then argue can be used to
imply Theorem C.2. It will be convenient to instead work with a modified version of LP-std, where
each edge e ∈ E is instead associated with two variables, namely xe and ze. We interpret the
former variable as the probability that the non-committal benchmark probes the edge e, whereas
the latter variable corresponds to the probability that e is included in the matching constructed by
the non-committal benchmark.

maximize
∑
e∈E

we · ze (LP-std-non)

subject to
∑
e∈E
v∈e

ze ≤ 1 ∀v ∈ V (C.5)

∑
e∈E
v∈e

xu,v ≤ `v ∀v ∈ V (C.6)

ze ≤ pe · xe ∀e ∈ E (C.7)

xe ≤ 1 ∀e ∈ E (C.8)

xe, ze ≥ 0 ∀e ∈ E (C.9)

We denote LPOPTstd−non(G) as the value of an optimum solution to LP-std-non. It turns out that
LP-std and LP-std-non take the same optimum value, no matter the stochastic graph G:

Lemma C.3. For any stochastic graph G = (V,E),

LPOPTstd(G) = LPOPTstd−non(G).

Proof. Suppose we are presented a solution (xe)e∈E to LP-std. In this case, if ze := pe · xe for
e ∈ E, then (xe, ze)e∈E is clearly a feasible solution to LP-std-non. As such,

LPOPTstd(G) ≤ LPOPTstd−non(G).

On the other hand, suppose that (xe, ze)e∈E is now an arbitrary solution to LP-std-non. In this
case, define x̄e := ze/pe for each e ∈ E. We claim that (x̄e)e∈E is a feasible solution to LP-std.

To see this, first observe that since ze ≤ pe · xe, we know that x̄e ≤ xe ≤ 1 for all e ∈ E.
Moreover, for each v ∈ V , ∑

e∈E:
v∈e

pe · x̄e =
∑
e∈E:
v∈e

ze ≤ 1,

and ∑
e∈E:
v∈e

x̄e ≤
∑
e∈E:
v∈e

xe ≤ `v.

Thus, (x̄e)e∈E is a feasible solution to LP-std.
Finally, observe that ∑

e∈E
we · ze =

∑
e∈E

pe · we · x̄e,

so LPOPTstd−non(G) ≤ LPOPTstd(G).
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Proof of Theorem C.1. Let us suppose that M is the matching returned when the non-committal
benchmark executes on G = (V,E). If we fix e ∈ E, then we can define xe as the probability A
probes the edge e, and ze as the probability that it includes e in M. Observe then that

OPTnon(G) = E[val(M)] =
∑
e∈E

we · ze.

Now, if we can show that (xe, ze)e∈E is a feasible solution to LP-std-non, then this will imply that

OPTnon(G) ≤ LPOPTstd−non(G) = LPOPTstd(G),

where the final line follows via an application of Lemma C.3. Thus, in order to complete the proof
it suffices to show that (xe, ze)e∈E is a feasible solution to LP-std-non.

Suppose now that we fix vertex v ∈ V . Observe that since it is matched to at most one edge of
G, we have that ∑

e∈E
v∈e

ze ≤ 1.

Similarly, ∑
e∈E
v∈e

xe ≤ `v,

as at most `v edges including v are probed by the non-committal benchmark.
If we now fix an edge e ∈ E, then observe that in order for e to be included in M , e must be

probed and e must be active. On the other hand, these two events occur independently of each
other. As such,

ze ≤ pe · ze.

This shows that all the constraints of LP-std-non hold for (xe, ze)e∈E , and so the proof is complete.

We conclude the section by observing that Theorem C.2 can be seen to hold by applying
Theorem C.1 to the instantiated graph Ĝ ∼ (G, r, n), and using a standard conditioning argument
(see the proof of Lemma 4.1 from Section 4 for details).

C.2 LP-new and the Non-committal Benchmark

We begin by observing that since LP-new and LP-std are the same LP when G = (U, V,E) is
bipartite and has unit patience values on V , Theorem C.1 implies that the competitive ratios in
Theorems 3.1, 3.5 and 5.2 all hold against the non-committal benchmark, for the special case of
unit patience. Moreover, Theorem C.2 implies that the competitive ratio of Theorem 4.3 holds
against the non-committal benchmark when the type graph has unit patience.

In the case when G has full patience, observe that LP-new takes the same value as the LP
in [21] considered by Gamlath et al. (see LP-rel in Appendix A for details). On the other hand,
Gamlath et al. argue that an optimum solution to their LP upper bounds the expected weight of
an optimum matching of G. As G has full patience, this corresponds to the performance of the
non-committal benchmark on G, and so LP-new is a relaxation of the non-committal benchmark
for this special case. The competitive ratios of Theorems 3.1, 3.5 and 5.2 thus all hold against the
non-committal benchmark for full patience. When G is a type graph with full patience, the same
techniques used in Lemma 4.1 from Section 4 can be used to show that LP-new-iid upper bounds
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the non-committal benchmark. This implies that Theorem 4.3 also holds against the non-committal
benchmark in this setting.

While our competitive ratios carry over in these specific scenarios, consider now the setting
when G has a single online node v. In this case, it is clear that LP-new exactly encodes the
committal benchmark; that is, LPOPTnew(G) = OPT(G). Moreover, OPT(G) can be attained
via a non-adaptive strategy. On the other hand, the edges probabilities and edge weights of G
can be chosen in such a way that the non-committal benchmarks gains strictly more power than
the committal benchmark; that is, OPT(G) < OPTnon(G). We remark that these problems are a
special case of ProblemMax, a stochastic probing problem which is studied in [5, 20, 36].

Let us suppose that v has patience `v = 2, and that there are 3 offline nodes U = {u1, u2, u3}.
For each i ∈ {1, 2, 3}, we denote the weight of (ui, v) by wi and assume that the edge (ui, v) is
active with probability pi. We make the following assumptions on these weights and probabilities:

1. w1 < w2 < w3.

2. p1 > p2 > p3.

3. w1 · p1 ≥ w2 · p2 > w3 · p3.

4. p2 · w2 − p3 · w3 ≥ p1 · w1 · (p2 − p3)

Clearly, there exists a choice of weights and probabilities which satisfy these constraints. For
instance, take w1 = 3, w2 = 4, w3 = 98, p1 = 0.8, p2 = 0.6, and p3 = 0.01.

Based on these assumptions let us now consider the value of OPT(G). Observe that

p2 · w2 + (1− p2) · p1 · w1 ≥ p3 · w3 + (1− p3) · p1 · w1 ≥ p3 · w3 + (1− p3) · p2 · w2,

where the first inequality follows from (4), and the second follows from (3). As a result, it is clear
to see that the committal benchmark corresponds to probing u2 and then u1 (if necessary); thus,
OPT(G) = p2 · w2 + (1− p2) · p1 · w1.

On the other hand, let us consider OPTnon(G), the value of the non-committal benchmark on
G. Consider the following non-committal probing algorithm:

• Probe (u2, v), and if st(u2, v) = 1, probe (u3, v).

• Else if st(u2, v) = 0, probe (u1, v).

• Return the edge of highest weight which is active (if any).

Clearly, this probing algorithm uses adaptivity to decide whether to reveal (u3, v) or (u1, v) in its
second probe. Specifically, if it discovers that (u2, v) is active, then it knows that it will return
an edge with weight at least w2. As such, it only makes sense for (u3, v) to be its next probe, as
w3 > w2 > w1. On the other hand, if (u2, v) is discovered to be inactive, it makes sense to prioritize
probing the edge (u1, v) over (u3, v), as the expected reward is higher; namely, w1 · p1 > w3 · p3.

The expected value of the edge returned is

p2 · p3 · w3 + p2 · (1− p3) · w2 + (1− p2) · p1 · w1.

Observe however that

p2 · p3 · w3 + p2 · (1− p3) · w2 + (1− p2) · p1 · w1 = p2 · w2 · ((1− p3) + p3 · w3/w2) + (1− p2) · p1 · w1

> p2 · w2 + (1− p2) · p1 · w1
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= OPT(G),

where the final inequality follows since w3 > w2. As a result, it is clear that this strategy
corresponds to the non-committal benchmark, and so OPTnon(G) > OPT(G). In fact, for the
specific choice when w1 = 3, w2 = 4, w3 = 98, p1 = 0.8, p2 = 0.6, and p3 = 0.01, it holds that

LPOPTnew(G)

OPTnon(G)
=

OPT(G)

OPTnon(G)
= 0.856269.

This example illustrates that since our competitive guarantees were proven against LPOPTnew(G),
they do not immediately extend to the non-committal benchmark. Moreover, this ratio improves
upon the negative result of [13], in which the authors present an example where the ratio between
OPT(G) and OPTnon(G) is at most 0.898.

D LP Relations

In this section, we show how a number of the LPs present in the literature are related to each
other18. In particular, we consider an LP introduced in by Brubach et al. [9], which assumes a
number of extra constraints in addition to those of LP-std. We review the motivation behind this
LP, as well as how it is derived.

For each subset R ⊆ U and v ∈ V , consider the induced stochastic subgraph, denoted G[{v}∪R],
formed by restricting the vertices of G to {v} ∪ R, and the edges of G to those between v and R.
We hereby denote OPT(v,R) as the value of the committal benchmark on the induced stochastic
graph G[{v} ∪R].

We can now formulate the LP of [9], whose constraints ensure that for each v ∈ V , the ex-
pected stochastic reward of v, suggested by an LP solution, is actually attainable by the committal
benchmark.

maximize
∑
u∈U

∑
v∈V

wu,v pu,v xu,v (LP-DP)

subject to
∑
v∈V

pu,v xu,v ≤ 1 ∀u ∈ U (D.1)∑
u∈U

xu,v ≤ `v ∀v ∈ V (D.2)∑
u∈U

pu,v xu,v ≤ 1 ∀v ∈ V (D.3)∑
u∈R

wu,v pu,v xu,v ≤ OPT(v,R) ∀v ∈ V, R ⊆ U (D.4)

0 ≤ xu,v ≤ 1 ∀u ∈ U, v ∈ V (D.5)

Observe the following relations between the LPs considered in the paper.

Theorem D.1. For any stochastic graph G, we have that

LPOPTnew(G) ≤ LPOPTDP (G) ≤ LPOPTstd(G), (D.6)

and the LPs are all equivalent, provided G has unit patience.

18We do not consider the full patience LP of Gamlath et al. in this section, as we discuss a generalization of their
LP in Appendix C.
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The second inequality is immediate since LP-DP is a tightening of LP-std. To prove the first
inequality, we will first proceed to state and prove Lemma D.2.

Assume that for each u ∈ U and v ∈ V , we are presented a fractional value, 0 ≤ xu,v ≤ 1.
Moreover, let us assume that the values (xu,v)u∈U,v∈V satisfy the following properties:

1. For each u ∈ U , ∑
v∈V

pu,v xu,v ≤ 1. (D.7)

2. For each v ∈ V , there exists a probing algorithm Av for the instance G[{v}∪U ] which respects
commitment and for which

P[Av probes (u, v)] = xu,v, (D.8)

for each u ∈ U 19.

In this case, we get the following lemma:

Lemma D.2. If the values (xu,v)u∈U,v∈V satisfy properties (D.7) and (D.8), then (xu,v)u∈U,v∈V is
a feasible solution to LP-DP.

Proof. Let us fix v ∈ V . We first observe that∑
u∈U

P[Av probes (u, v)]

corresponds to the expected number of probes that Av makes when executing on G[{v}∪U ]. Thus,
since Av makes at most `v probes, we know that∑

u∈U
xu,v =

∑
u∈U

P[Av probes (u, v)] ≤ `v.

Let us now denote M as the matching returned once Av finishes executing on G[{v} ∪ U ]. This
is either a single edge including v, or the empty-set. As such, we denote M(v) to indicate which
vertex v is matched to (where M(v) := ∅ if v remains unmatched).

Observe then that for each u ∈ U , we have that

P[M(v) = u] = P[Av probes (u, v) and st(u, v) = 1] (D.9)

= pu,v xu,v, (D.10)

as Av respects commitment by assumption.
As a result, since v is matched to at most one vertex of U ,∑

u∈U
pu,v xu,v ≤ 1.

It remains to verify that the additional LP constraints present in LP-DP hold for v. Let us
define val(M) as the weight of the edge matched to v (which is 0 if v remains unmatched by Av).
Observe that

E[val(M)] =
∑
u∈U

wu,v pu,v xu,v,

19In the terminology of Section 2, we say that the values (xu,v)u∈U,v∈V can be implemented losslessly.
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after applying (D.9) and linearity of expectation. Thus, since Av is a valid probing algorithm
which executes on G[{v} ∪ U ], this value can be no larger than what is attained by the committal
benchmark on G[{v} ∪ U ]. As such,∑

u∈U
wu,v pu,v xu,v = E[val(M)] ≤ OPT(v, U),

where OPT(v, U) corresponds to the value of the committal benchmark on G[{v} ∪ U ]. More
generally, if we now fix R ⊆ U , then observe that∑

u∈R
wu,v pu,v xu,v = E[val(M) 1[M(v)∈R]],

where M(v) ∈ R corresponds to the event in which the vertex matched to v lies in R.
Of course, we can also modify the probing algorithm Av in such a way that it returns ∅ instead

an edge within R×{v}. This alternative probing algorithm (which depends on R) will then return
an edge of expected value

E[val(M) 1[M(v)∈R]].

As such, for each R ⊆ U ,∑
u∈R

wu,v pu,v xu,v = E[val(M) 1[M(v)∈R]] ≤ OPT(v,R),

where OPT(v,R) corresponds to the committal benchmark on G[{v} ∪R].
Now, the vertex v was arbitrary, so we know that all the constraints on the vertices of LP-DP

hold. By assumption, we also know that for each u ∈ U ,∑
v∈V

pu,v xu,v ≤ 1.

Thus, (xu,v)u∈U,v∈V is a feasible solution to LP-DP, thereby completing the proof.

With this lemma, we now prove Theorem D.1.

Proof of Theorem D.1. Suppose that we are presented an optimum solution to LP-new, denoted
(xv(u))v∈V,u∈U(≤`v) . Recall that for each u ∈ U, v ∈ V and we defined the edge variable xu,v, where

x̃u,v =

`v∑
i=1

∑
u∗∈U(≤`v):

u∗i =u

giv(u
∗)xv(u

∗)

pu,v
.

We first observe that the values (x̃u,v)u∈U,v∈V satisfy property (D.7) by assumption (see (2.8) of LP-
new). Moreover, for each fixed v ∈ V , if we consider the values (x̃u,v)u∈U , then the VertexProbe
algorithm applied to the input (G, (xv(u))u∈U(≤`v) , v), satisfies property (D.8), by Lemma 2.3.

We may therefore conclude that (x̃u,v)u∈U,v∈V is a feasible solution to LP-DP. On the other
hand, (xv(u))v∈V,u∈U(≤`v) is an optimum solution to LP-new, so

LPOPTnew(G) =
∑

u∈U,v∈V
wu,v pu,v x̃u,v ≤ LPOPTDP (G),

thus proving Theorem D.1.
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We conclude the section by observing the following relation between the LPs in the known i.i.d.
stochastic matching setting, namely LP-new-iid and LP-std-iid:

Proposition D.3. If (G, r, n) is a known i.i.d. input, then

LPOPTnew−iid(G, r, n) ≤ LPOPTstd−iid(G, r, n).

In fact, LP-new-iid and LP-std-iid are identical when G has unit patience.

This follows via a standard conditioning argument involving the instantiated graph Ĝ ∼ (G, r, n),
combined with an application of Theorem D.1, so we omit the argument.

E Non-adaptive Probing Algorithms and Adaptivity Gaps

Suppose that G = (U, V,E) is an arbitrary stochastic graph, and we are presented an online probing
algorithm A which is non-adaptive and respects commitment (as defined in Section 2). We may
assume that A operates in the ROM setting, that is the ordering π on V is chosen uniformly at
random, though the definitions we now describe follow identically when π is chosen by an adversary,
as well as in the known i.i.d. setting.

We hereby denote A(G) as the matching returned by executing A on G, and val(A(G)) as the
(random) value of this matching.

With this notation, we define the adaptivity gap of a stochastic graph G in the ROM setting as
the ratio,

supB E[val(B(G))]

OPT(G)
,

where the supremum is over all non-adaptive online probing algorithms.
While all of the algorithms we consider throughout the paper are implemented non-adaptivity,

of particular interest to us are Algorithms 3 and 5 in which the stochastic graph G is presented
ahead of time. Observe that Theorems 3.1 and 3.8, imply the following bounds on the relevant
adaptivity gaps:

Corollary E.1. The known stochastic matching problem with offline vertex weights, arbitrary pa-
tience and adversarial arrivals has an adaptivity gap no worse than 1− 1/e.

Corollary E.2. The known stochastic matching problem with arbitrary patience, edge weights and
ROM arrivals has an adaptivity gap which is no worse than 1− 1/e.

F Deferred Proofs

Proof of Theorem 3.5. In this setting, the order of online vertices π is generated uniformly at
random. As such, we denote the vertices of V as v1, . . . , vn, where vt corresponds to the vertex in
position 1 ≤ t ≤ n of π (and n := |V |).

For each u ∈ U and v ∈ V , we once again make use of the edge variables (x̃u,v)u∈U,v∈V associated
to the solution (xv(u))v∈V,u∈U(`v) .

Let us now fix a particular vertex v ∈ V , and a vertex u ∈ U . We say that u is free for v,
provided u is unmatched when v is processed by Algorithm 3.

Observe then that if C(u, v) corresponds to the event in which v commits to u during one of its
`v probes, then

P[M(v) = u] = P[C(u, v) and u is free for v]
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= P[C(u, v)] · P[u is free for v]

= pu,v x̃u,v P[u is free for v],

where the final line follows from Lemma 2.3.
We know however that,

P[u is free for v] =
n∑
t=1

P[u is free for v | vt = v] · P[vt = v] (F.1)

=

n∑
t=1

P[u is free for v | vt = v]

n
, (F.2)

where the last equality follows since π is generated uniformly at random.
As such, we may lower bound P[u is free for v | vt = v] for each t = 1, . . . , n in order to derive a

lower bound on the competitive ratio of the algorithm.
Let us now fix 1 ≤ t ≤ n and condition on the event in which vt = v. Observe then that

P[u is not free for vt | vt = v] = P[∪t−1
k=1M(vk) = u | vt = v] ≤

t−1∑
k=1

P[M(vk) = u | vt = v],

as u is not free for vt, if and only if one of v1, . . . , vt−1 matches to u.
On the other hand, using Lemma 2.3, we know that for each k = 1, . . . , t− 1

P[M(vk) = u | vt = v] =
∑
s∈V :
s 6=v

P[M(s) = u | {vt = v} ∩ {vk = s}] · P[vk = s | vt = v]

≤
∑
s∈V :
s 6=v

P[C(s, u) | {vt = v} ∩ {vk = s}] · P[vk = s | vt = v]

=
∑
s∈V :
s 6=v

pu,s x̃u,s
n− 1

,

as once we condition on {vt = v}, vk is uniformly distributed amongst V \ {v}.
As a result,

P[u is not free for vt | vt = v] ≤ (t− 1)
∑
s∈V :
s 6=v

pu,s x̃u,s
n− 1

≤ t− 1

n− 1
,

by the constraints of LP-new.
Thus, combined with (F.1),

P[u is free for v] ≥
n∑
t=1

1

n

(
1− t− 1

n− 1

)
= 1−

∑n
t=1(t− 1)

n (n− 1)

= 1/2.
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To conclude, for each edge (u, v) ∈ E, we have that

P[M(v) = u] = pu,v x̃u,v P[u is free for v] ≥ pu,v x̃u,v
2

.

On the other hand, if we denote val(M) as the value of the matching M, then val(M) =∑
u∈U,v∈V wu,v 1[M(v)=u]. Thus,

E[val(M)] =
∑

u∈U,v∈V
wu,v P[M(v) = u] ≥

∑
u∈U,v∈V

wu,v x̃u,v pu,v
2

.

As (xv(u))v∈V,u∈U(≤`v) is an optimum solution to LP-new, this completes the proof.

Proof of Lemma 4.1. Suppose that (G, r, n) is a known i.i.d. instance, where G = (U, V,E) is a
type graph with maximum patience ` := maxv∈V `v. We can then define the following collection of
random variables, denoted (Xt(u))t∈[n],u∈U(≤`) , based on the following randomized procedure:

• Draw the instantiated graph Ĝ ∼ (G, r, n), whose vertex arrivals we denote by v1, . . . , vn.

• Compute an optimum solution of LP-new for Ĝ, which we denote by (xvt(u))t∈[n],u∈U(≤vt) .

• For each t = 1, . . . , n and u ∈ U (≤`), set Xt(u) = xvt(u) if u ∈ U (≤`vt ), otherwise set
Xt(u) = 0.

Observe then that by definition, (Xt(u))
t∈[n],u∈U(≤`vt )

is a feasible solution to LP-new for Ĝ.

As such, for each t = 1, . . . , n ∑
u∈U(≤`)

Xt(u) ≤ 1, (F.3)

and for each u ∈ U , ∑
t∈[n],i∈[`]

∑
u∗∈U(≤`):
u∗i =u

giv(u
∗) ·Xt(u

∗) ≤ 1. (F.4)

Moreover, (Xt(u))
t∈[n],u∈U(≤`vt )

is a optimum solution to LP-new for Ĝ, and so Theorem 2.2 implies

that

OPT(Ĝ) ≤ LPOPTnew(Ĝ) =
n∑
t=1

∑
u∈U(≤`)

 |u|∑
i=1

wui,v · giv(u)

 ·Xt(u). (F.5)

In order to make use of these inequalities in the context of the type graph G, let us first fix a
type node v ∈ V and a tuple u ∈ U (≤`). We can then define

yv(u) :=

n∑
t=1

E[Xt(u) · 1[vt=v]], (F.6)

where the randomness is over the generation of Ĝ. Observe that by definition of the (Xt(u))t∈[n],u∈U(≤`)

values,
yv(u) = 0,

provided |u| > `v.
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We claim that (yv(u))v∈V,u∈U(≤`v) is a feasible solution to LP-new-iid. To see this, first observe
that if we multiply (F.3) by the indicator random variable 1[vt=v] while summing over t ∈ [n], then
we get that ∑

u∗∈U(≤`)

n∑
t=1

Xt(u) · 1[vt=v] ≤
n∑
t=1

1[vt=v].

As a result, if we take expectations over this inequality,

∑
u∈U(≤`)

yv(u) =
∑

u∈U(≤`)

E

[
n∑
t=1

Xt(u) · 1[vt=v]

]

≤
n∑
t=1

P[vt = v]

= rv,

for each v ∈ V .
Let us now fix u ∈ U . Observe that by rearranging the left-hand side of (F.4),∑

t∈[n]

∑
i∈[`]

∑
u∗∈U(≤`):
u∗i =u

giv(u
∗) ·Xt(u

∗) =
∑
i∈[`]

∑
u∗∈U(≤`):
u∗i =u

giv(u) ·
∑
v∈V

∑
t∈[n]

Xt(u
∗) · 1[vt=v]. (F.7)

Thus, after taking expectation over (F.4),∑
v∈V

∑
i∈[`]

∑
u∗∈U(≤`v):

u∗i =u

yv(u
∗) ≤ 1,

for each u ∈ U .
Since (yv(u))v∈V,u∈U(≤`v) satisfies these inequalities, and the variables are clearly all non-

negative, it follows that (yv(u))v∈V,u∈U(≤`v) is a feasible solution to LP-new-iid.
In order to complete the proof, let us rearrange the right-hand side of (F.5) as in (F.7) and take

expectations. We then get that

E[OPT(Ĝ)] ≤
∑
v∈V

∑
u∈U(≤`)

 |u|∑
i=1

wui,v · giv(u)

 · yv(u).

Now, OPT(G, r, n) = E[OPT(Ĝ)] by definition, so since (yv(u))v∈V,u∈U(≤`v) is feasible, it holds
that

OPT(G, r, n) ≤ LPOPTnew−iid(G, r, n),

thus completing the proof.
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G Extended Related Works

Our results pertain to the online stochastic matching problem which (loosely speaking) is online
bipartite matching where edges are associated with their probabilities of existence. There is a
substantial body of research pertaining to the “classical” (i.e. non stochastic) online bipartite model
in the fully adversarial online model, the random order model, and the i.i.d. input model. The ever
growing interest in various online bipartite matching problems is a reflection of the importance
of online advertising but there are many other natural applications. The literature concerning
competitive analysis20 of online bipartite matching is too extensive to do justice to many important
papers. We refer the reader to the excellent 2013 survey by Mehta [33] with emphasis on online
variants relating to ad-allocation. Given the continuing interest in ad-allocation, the survey is not
current but does describe the basic results.

The seminal result for unweighted online bipartite matching is due to Karp, Vazirani, and
Vazirani [28]. They gave the randomized Ranking algorithm that achieves competitive ratio 1−1/e
in the adversarial online setting which they show is the best possible ratio for any randomized
algorithm. There have been many proofs of this seminal result, such as the primal-dual approach
due to Devanur et al. [16]. Any greedy algorithm (i.e., one that always makes a match when
possible) has a 0.5 ratio, and this is the best possible a deterministic algorithm can attain. The
Ranking algorithm can also be viewed as a deterministic algorithm in the ROM input model. In
the ROM model, Madhian and Yan [31] show that the randomized Ranking algorithm achieves
competitive ratio .696. For the case of weighted offline vertices and adversarial input sequences,
Aggarwal et al. [4] were able to achieve a randomized 1− 1/e competitive ratio by their Perturbed
Ranking algorithm. Huang et al. [25] show that the Perturbed Ranking algorithm obtains a .6534
competitive ratio in the ROM input model.

Feldman et al. [19] introduced online bipartite matching in the i.i.d. model in which each online
vertex is independently and identically generated from some known distribution. In this model,
they were able to beat the 1− 1/e inapproximation for bipartite matching that applies to the fully
adversarial online model. The i.i.d. online bipartite model has been studied for the unweighted
and edge weighted models. The most recent competitive ratios for integral arrival rates are due
to Brubach et al. [10] in which they derive a .7299 ratio for the (offline) vertex weighted case
and a .705 ratio for edge weighted graphs. Karande et al. [27] show that any competitive ratio
for the ROM model applies to the unknown (and therefore known) i.i.d. models. It follows that
any inapproximation for the known i.i.d. model applies to the ROM model. Kesselheim et al.
[29] extend the classical secretary result and established the optimal 1/e ROM ratio for bipartite
matching with edge weights.

An early example of stochastic probing without commitment is the Pandora’s box problem
attributed to Weitzman [39]. In Weitzman’s Pandora’s box problem, a set of boxes is given, where
each box contains a stochastic value from a known distribution and a cost for opening (i.e., probing)
the box. The algorithm has the option at any time of accepting the value of any opened box and
pays the total cost of all opened boxes. This is an offline probing problem in that boxes can be
opened in any order. An online version of the Pandora’s box problem has recently been studied in
Esfandiari et al. [18]. Stochastic probing with commitment has been studied for various packing
problems, most notably for the knapsack problem, as studied in Dean et al. [14, 15]. In the

20Initially, competitive analysis refered to the relative performance (i.e., the competitive ratio) of an online algorithm
as compared to an optimal solution (in the worst case over all input sequences determined adversarially). We extend
the meaning of the competitive ratio to also refer to input sequences generated in the ROM model as well as sequences
generated i.i.d. from a known or unknown distribution; that is, whenever the algorithm has no control over the order
of input arrivals.
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stochastic knapsack setting, the stochastic inputs are items whose values are known but whose
sizes are stochastic and not known until the algorithm probes the item. As soon as the knapsack
capacity is exceeded by a probed item, the algorithm terminates. Dean et al. also introduced the
offline issue of measuring the benefit of adaptively choosing probes versus having a fixed order of
probes.

Turning back to matching problems, Chen et al. [12] introduced the stochastic matching prob-
lem assuming a known stochastic graph and algorithms that can probe any edge in any order. They
obtained a 4-approximation21 greedy algorithm in the unweighted case for arbitrary patience values.
They conjectured that their greedy algorithm was a 2-approximation. Subsequently, Adamczyk [1]
confirmed that the greedy algorithm is a 2-approximation for the unweighted problem and that this
approximation is tight. Bansal et al. [6] established a 4-approximation for the edge weighted case
with arbitrary patience and a 3-approximation for the special case of bipartite graphs. Adamczyk
et al. [3] improved the Bansal et al. bounds providing an approximation algorithm with a ratio of
2.845 for bipartite graphs and an algorithm with a ratio of 3.709 for general graphs. Baveja et al. [7]
recently improved the analysis of the original algorithm of Bansal et al., yielding an approximation
ratio of 3.224 for general graphs.

Of particular importance to our paper is the known stochastic matching framework with ROM
arrivals, as defined precisely in Section 2. Gamlath et al. [21] presented a probing algorithm which
is a 1− 1

e -approximation for the bipartite case in the full patience setting ; that is, when there are no
patience restrictions for nodes on either side of the bipartition. The full patience setting is closely
related to the bipartite matching algorithm studied by Ehsani et al. [17], which they prove is a
1− 1

e -approximation as a corollary of their work in the more general combinatorial auctions prophet
secretary problem. While not explicitly stated in [17], their bipartite matching algorithm can be
interpreted as an adaptive probing algorithm in the known stochastic matching framework with
ROM arrivals, attaining the same 1− 1

e non-adaptive approximation ratio as Gamlath et al.. Very
recently, Tang et al. [37] provided an alternative algorithm also attaining the same approximation
ratio of 1− 1

e in the more general oblivious bipartite matching setting, however their algorithm does
not execute in an online fashion, and so is incomparable. See also Tang et al. [38] for an online
greedy algorithm achieving a .501 ratio for a known stochastic graph with edge weights.

Mehta and Panigrahi [34] adapted the stochastic matching problem to the online setting prob-
lem with unit patience where the stochastic graph is not known to the algorithm. They specifically
considered the unweighted case for unit patience (for the online nodes) and uniform edge probabil-
ities (i.e,, for every edge e, pe = p for some fixed probability p). They showed that every greedy
algorithm has competitive ratio 1

2 . In the same online setting, they provided a greedy algorithm

that achieves competitive ratio 1
2(1 + (1− p)2/p) which limits to 1

2(1 + e−2) ≈ .567 as p→ 0. They
also show that against a “standard linear programming (LP)” benchmark, that the best possible
ratio is .621 < 1 − 1

e . However, this does not preclude a 1 − 1
e competitive ratio for a stricter LP

bound on an optimal stochastic probing algorithm. Preceding the Mehta and Panigrahi work is a
result in Bansal et al. [6] where they consider a known stochastic (type) graph with a distribution
on the online nodes. This can be called the stochastic matching problem with known i.i.d. inputs.
Bansal et al. achieve a 7.92 competitive ratio (or approximately, .13 as a fraction) in this stochastic
i.i.d. model. This was improved to .24 by Adamczyk [3] and most recently, by Brubach et al. [11]
where they obtain a .46 competitive ratio and a 1− 1

e inapproximation against a standard LP.
Returning to the unknown stochastic graph setting, there are recent independent papers by

21Unfortunately, approximation and competitive bounds for maximization problems are sometimes represented
both as ratios > 1 and as fractions < 1. We shall report these ratios as stated in the relevant papers. Our results
will be stated as fractions.
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Goyal and Udwani [24] and Brubach et al. [9]. Goyal and Udwani consider the vertex weighted
unit patience problem and establish a (best possible) 1− 1

e competitive ratio against an LP that acts
as an upper bound on the committal benchmark under the assumption that the edge probabilities
are decomposable (i.e., pu,v = pu · pv) and a .596 competitive ratio for vanishingly small edge
probabilities. Our paper is motivated by and most closely follows the Brubach et al. [9] paper.
Brubach et al. use and motivate the “ideal stochastic benchmark” (for arbitrary patience) and an
LP relaxation for that ideal benchmark. They establish a best possible deterministic 1

2 competitive
ratio against their LP for the vertex weighted online stochastic matching problem. In a recent
paper, Huang and Zhang [26] provide a randomized algorithm for unit patience and offline vertex
weights in the online stochastic matching framework. In the limit as edge probabilities decrease,
their algorithm achieves a .572 competitive ratio.
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