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Extending Wormald’s Differential Equation Method to

One-sided Bounds

Patrick Bennett∗ Calum MacRury †

Abstract

In this note, we formulate a “one-sided” version of Wormald’s differential equation
method. In the standard “two-sided” method, one is given a family of random variables
which evolve over time and which satisfy some conditions including a tight estimate
of the expected change in each variable over one time step. These estimates for the
expected one-step changes suggest that the variables ought to be close to the solution
of a certain system of differential equations, and the standard method concludes that
this is indeed the case. We give a result for the case where instead of a tight estimate
for each variable’s expected one-step change, we have only an upper bound. Our proof
is very simple, and is flexible enough that if we instead assume tight estimates on the
variables, then we recover the conclusion of the standard differential equation method.

1 Introduction

In the most basic setup of Wormald’s differential equation method, one is given a sequence
of random variables (Y (i))∞i=0 derived from some random process which evolves step by
step. The random variables (Y (i))∞i=0 all implicitly depend on some n ∈ N, and the goal is
understand their typical behaviour as n → ∞.

Our running example is based on the the Erdős–Rényi random graph process (Gi)
m
i=0

on vertex set [n] := {1, . . . , n} where Gi = ([n], Ei) and m,n ∈ N. Here G0 = ([n], E0) is
the empty graph, and Gi+1 is constructed from Gi by drawing an edge ei+1 from

(
[n]
2

)
\ Ei

uniformly at random (u.a.r.), and setting Ei+1 := Ei ∪ {ei+1}. Suppose that we wish to
understand the size of the matching produced by the greedy algorithm as it executes on
(Gi)

m
i=0. More specifically, when ei+1 arrives, the greedy algorithm adds ei+1 to the current

matching if the endpoints of ei+1 were not previously matched. We will let m = cn, i.e.
we will add a linear number of random edges. Observe that if Y (i) is the number of edges
of Gi matched by the algorithm, then Y (i) is a function of e1, . . . , ei (formally, Y (i) is Hi-
measurable where Hi is the sigma-algebra generated from e1, . . . , ei). Then for i < m,

E[∆Y (i) | Hi] =

(
n−2Y (i)

2

)
(
n
2

)
− i

=

(
1−

2Y (i)

n

)2

+O

(
1

n

)
, (1)
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where ∆Y (i) := Y (i+1)− Y (i), and the asymptotics are as n → ∞ (which will be the case
for the remainder of this note). By scaling (Y (i))mi=0 by n, we can interpret the left-hand side
of (1) as the “derivative” of Y (i)/n evaluated at i/n. This suggests the following differential
equation:

y′(t) = (1− 2y(t))2, y(0) = 0 (2)

with initial condition y(0) = 0. Wormald’s differential equation method allows us to conclude
that with high probability (i.e. with probability tending to 1 as n → ∞, henceforth
abbreviated w.h.p.),

Y (m) = (1 + o(1))y(m/n), (3)

where y(t) := t/(1 + 2t) is the unique solution to (2).
Returning to the general setup of the differential equation method, suppose we are given

a sequence of random variables (Y (i))∞i=0 which implicitly depend on n ∈ N. Assume that
the one-step changes are bounded, i.e., there exists a constant β ≥ 0 such that |∆Y (i)| ≤ β
for each i ≥ 0. Moreover, suppose each Y (i) is determined by some sigma-algebra Hi, and
its expected one-step changes are described by some Lipshitz function f = f(t, y). That is,
for each i ≥ 0,

E[∆Y (i) | Hi] = f(i/n, Y (i)/n) + o(1). (4)

If Y (0) = (1 + o(1))ỹn for some constant ỹ, and m = m(n) is not too large, then the
differential equation method allows us to conclude that w.h.p. Y (m)/n = (1 + o(1))y(m/n)
for y which satisfies the differential equation suggested by (4), i.e.

y′(t) = f(t, y(t))

with initial condition y(0) = ỹ. In this note, we consider the case when we have an inequality
in place of (4). We are motivated by applications to online algorithms in which one wishes to
upper bound the performance of any online algorithm, opposed to just a particular algorithm.
(See Section 1.1 for an example pertaining to online matching in (Gi)

m
i=0 as well as some

discussion of further applications). We are also motivated by the existence of deterministic
results of which we wanted to prove a random analogue. For example, consider the following
classical result due to Petrovitch [9]:

Theorem 1. Suppose f : R2 → R is Lipschitz continuous, and y = y(t) satisfies

y′(t) = f(t, y(t)), y(c) = y0.

Suppose z = z(t) is differentiable and satisfies

z′(t) ≤ f(t, z(t)), z(c) = z0 ≤ y0.

Then z(t) ≤ y(t) for all t ≥ c.

With the above result in mind (as well as the standard differential equation method), it’s
natural to wonder what can be said about a sequence of random variables (Zi)

∞
i=1 satisfying

E[∆Zi | Hi] ≤ f(i/n, Zi/n) (5)

2



instead of the equality version (4). More precisely, if (Yi)
∞
i=1 satisfies (4) and Z0 < Y0 then

should it not follow that we likely have Zi ≤ Yi (perhaps modulo some relatively small error
term) for all i ≥ 0?

We briefly point out that if f is nonincreasing in its second variable, then the problem
described in the previous paragraph is much easier. Indeed, whenever the random variable
satisfies Zi−Yi ≤ 0, it is also a supermartingale. More precisely, when Zi ≤ Yi we have that

E[∆(Zi − Yi) | Hi] ≤ f(i/n, Zi/n)− f(i/n, Yi/n) ≤ 0

by the monotonicity assumption. In this case, assuming the initial gap |Z0 − Y0| is large
enough, standard martingale techniques can be used to bound the probability that the
supermartingale Zi − Yi becomes positive. However, we would like to handle applications
where we do not have this monotonicity assumption. For instance, in our running example,
f(t, z) = (1− 2z)2 is not increasing in z.

Of course, the differential equation method in general deals with systems of random
variables (and the associated systems of differential equations). So what can be said about
systems of deterministic functions whose derivatives satisfy inequalities instead? It turns out
that to generalize Theorem 1 to a system, we need the functions to be cooperative. We
say the functions fj := R

a+1 → R, 1 ≤ j ≤ a are cooperative (respectively, competitive)
if each fj is nondecreasing (respectively, nonincreasing) in all of its a + 1 inputs except for
possibly the first input and the (j+1)th one. In other words, fj(t, y1, . . . ya) is nondecreasing
in all variables except possibly t and yj. Note that some sources refer to a system with the
cooperative property as being quasimonotonic. Observe that in the one-dimensional case
a = 1, every function is cooperative/cooperate. The following theorem is folklore (see [11]
for some relevant background, and Section 3 for a proof):

Theorem 2. Suppose fj : Ra+1 → R, 1 ≤ j ≤ a are Lipschitz continuous and cooperative,
and yj satisfies

y′j(t) = fj(t, y1(t), . . . , ya(t)), 1 ≤ j ≤ a, t ≥ c. (6)

Suppose zj , 1 ≤ j ≤ a are differentiable and satisfy zj(c) ≤ yj(c) and

z′j(t) ≤ fj(t, z1(t), . . . , za(t)), 1 ≤ j ≤ a, t ≥ c. (7)

Then zj(t) ≤ yj(t) for all 1 ≤ j ≤ a, t ≥ c.

Cooperativity is necessary in the sense that if we do not have it, then one can choose
initial conditions for the functions yj, zj to make the conclusion of Theorem 2 fail. Indeed,
suppose we do not have cooperativity, i.e. there exist j, j′ with j′ 6= j + 1 and some points
p,p′ ∈ R

a+1 that agree everywhere except for their j′th coordinate, where we have pj′ > p′j′,
and fj(p) < fj(p

′). Consider the following initial conditions:
(
c, y1(c), . . . , ya(c)

)
= p,

(
c, z1(c), . . . , za(c)

)
= p′.

Then we have that zj(c) = yj(c) = pj+1 = p′j+1. Furthermore, z′j(c) could be as large as
fj(p

′) > fj(p) = y′j(c) in which case clearly zj(t) > yj(t) for some t > c.
Our main theorem in this paper, Theorem 3, is essentially the random analogue of The-

orem 2. Before providing its formal statement, we expand upon why it is useful for proving
impossibility/hardness results for online algorithms. The reader can safely skip Section 1.1
if they would first like to instead read Theorem 3.
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1.1 Motivating Applications

The example considered in this section is closely related to the 1/2-impossibility (or hardness)
result for an online stochastic matching problem considered by the second author, Ma and
Grammel in [8]. In fact, in the latest arXiv version of [8], Theorem 3 is used explicitly
to simplify the most technical step of the argument. Our theorem can also be used to
simplify the proofs of the 1

2
(1 + e−2)-impossibility result of Fu et al. (Theorem 2 in [6]),

and the 1 − ln(2 − 1/e)-impossibility result of Fata et al. (Lemma 5 in [3]). All of the
aforementioned papers prove impossibility results for various online stochastic optimization
problems – more specifically, hardness results for online contention resolution schemes [4] or
prophet inequalities against an “ex-ante relaxation” [7]. We think that Theorem 3 will find
further applications as a technical tool in this area.

Let us now return to the definition of the Erdős–Rényi random graph process (Gi)
m
i=0

as discussed in Section 1, where we again assume that m = cn for some constant c > 0.
Recall that (3) says that if Y (m) is the size of the matching constructed by the greedy
matching algorithm when executed on (Gi)

m
i=0, then w.h.p. Y (m)/n = (1 + o(1))y(c) where

y(c) = c/(1 + 2c). In fact, (3) can be made to hold with probability 1 − o(1/n2), and so
E[Y (m)]/n = (1 + o(1))c/(1 + 2c) after taking expectations.

The greedy matching algorithm is an example of an online (matching) algorithm
on (Gi)

m
i=0. An online algorithm begins with the empty matching on G0, and its goal is

to build a matching of Gm. While it knows the distribution of (Gi)
m
i=0 upfront, it learns

the instantiations of the edges sequentially and must execute online. Formally, in each step
i ≥ 1, it is presented ei and then makes an irrevocable decision as to whether or not to include
ei in its current matching, based upon e1, . . . , ei−1 and its previous matching decisions. Its
output is the matching Mm, and its goal is to maximize E[|Mm|]. Here the expectation is
over (Gi)

m
i=1 and any randomized decisions made by the algorithm.

Suppose that we wish to prove that the greedy algorithm is asymptotically optimal.
That is, for any online algorithm, if Mm is the matching it outputs on Gm, then E[|Mm|] ≤
(1+o(1))E[Y (m)]. In order to prove this directly, one must compare the performance of any
online algorithm to the greedy algorithm. This is inconvenient to argue, as there exist rare
instantiations of (Gi)

m
i=0 in which being greedy is clearly sub-optimal.

We instead upper bound the performance of any online algorithm by (1+o(1))y(c)n. Let
(Mi)

m
i=0 be the sequence of matchings constructed by an arbitrary online algorithm while

executing on (Gi)
m
i=0. For simplicity, assume that the algorithm is deterministic so that Mi

is Hi-measurable. In this case, we can replace (1) with inequality. I.e., if Z(i) := |Mi|, then
for i < m,

E[∆Z(i) | Hi] ≤

(
1−

2Z(i)

n

)2

+O

(
1

n

)
. (8)

Recall now the intuition behind the differential equation method. If we scale (Z(i))ni=0 by
n, then we can interpret the left-hand side of (8) as the “derivative” of Z(i)/n evaluated at
i/n. This suggests the following differential inequality:

z′ ≤ (1− 2z)2, (9)

with inital condition z(0) = 0. By applying Theorem 3 to (Z(i))mi=0, we get that

Z(m)/n ≤ (1 + o(1))y(c) (10)
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with probability 1− o(n−2). As a result, E[Z(m)] ≤ (1+ o(1))y(c)n, and so we can conclude
that greedy is asymptotically optimal.

2 Main Theorem

For any sequence (Z(i))∞i=0 of random variables and i ≥ 0, we will use the notation ∆Z(i) :=
Z(i + 1) − Z(i). Note that given a filtration (Hi)

∞
i=0 (i.e., a sequence of increasing σ-

algebras), we say that (Zj(i))
∞
i=0 is adapted to (Hi)

∞
i=0, provided Zi is Hi-measurable for

each i ≥ 0. Finally, we say that a stopping time I is adapted to (Hi)
∞
i=0, provided the event

{I = i} is Hi-measurable for each i ≥ 0.
Given a ∈ N, suppose that D ⊆ R

a+1 is a bounded domain, and for 1 ≤ j ≤ a, let
fj : D → R. We assume that the following hold for each j:

a) fj is L-Lipschitz,

b) |fj | ≤ B on D, and

c) the (fj)
a
j=1 are cooperative.

Given (0, ỹ1, . . . , ỹa) ∈ D, assume that y1(t), . . . , ya(t) is the (unique) solution to the system:

y′j(t) = fj(t, y1(t), . . . , ya(t)), yj(0) = ỹj (11)

for all t ∈ [0, σ], where σ is any positive value.

Theorem 3. Suppose that for each 1 ≤ j ≤ a we have a sequence of random variables
(Zj(i))

∞
i=0 which is adapted to some filtration (Hi)

∞
i=0. Let n ∈ N, and β, b, λ, δ > 0 be any

parameters such that λ ≥ max
{
β +B, L+BL+δn

3L

}
. Given an arbitrary stopping time I ≥ 0

adapted to (Hi)
∞
i=0, suppose that the following properties hold for each 0 ≤ i < min{I, σn}:

1. The ‘Boundedness Hypothesis’: maxj |∆Zj(i)| ≤ β, and maxj E[(∆Zj(i))
2 | Hi] ≤ b

2. The ‘Trend Hypothesis’: (i/n, Z1(i)/n, . . . Za(i)/n) ∈ D and

E[∆Zj(i) | Hi] ≤ fj(i/n, Z1(i)/n, . . . Za(i)/n) + δ

for each 1 ≤ j ≤ a.

3. The ‘Initial Condition’: Zj(0) ≤ yj(0)n+ λ for all 1 ≤ j ≤ a.

Then, with probability at least 1− 2a exp
(
− λ2

2(bσn+2βλ)

)
,

Zj(i) ≤ nyj(i/n) + 3λe2Li/n (12)

for all 1 ≤ j ≤ a and 0 ≤ i ≤ min{I, σn}.

Remark 1 (Simplified Parameters). By taking b = β2 and I = ⌈σn⌉, we can recover
a simpler version of the theorem which is sufficient for many applications, including the
motivating example of Section 1.1.
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Remark 2 (Stopping Time Selection). Let 0 ≤ γ ≤ 1 be an additional parameter to
Theorem 3. The stopping time I is most commonly applied in the following way. Suppose
that (Ei)

∞
i=0 is a sequence of events adapted to (Hi)

∞
i=0, and for each 0 ≤ i < σn, Conditions

1. and 2. are only verified when Ei holds. Moreover, assume that P[∩m−1
i=0 Ei] = 1 − γ. By

defining I to be the smallest i ≥ 0 such that Ei does not occur, Theorem 3 implies that with

probability at least 1− 2a exp
(
− λ2

2(bσn+2βλ)

)
− γ,

Zj(i) ≤ nyj(i/n) + 3λe2Li/n (13)

for all 1 ≤ j ≤ a and 0 ≤ i ≤ σn.

Remark 3 (Competitive Functions). Theorem 3 yields upper bounds for families of ran-
dom variables. There is a symmetric theorem for lower bounds, where all the appropriate
inequalities are reversed and the functions fj are competitive instead of cooperative.

We conclude the section with a corollary of Theorem 3 which provides a useful extension
of the theorem. Roughly speaking, the extension says that when verifying Conditions 1. and
2. at time 0 ≤ i ≤ min{σn, I}, it does not hurt to assume that (12) holds.

Corollary 4 (of Theorem 3). Suppose that in the terminology of Theorem 3, Conditions 1.
and 2. are only verified for each 0 ≤ i ≤ min{I, σn} which satisfies Zj′(i) ≤ nyj′(i/n) +
3λe2Li/n for all 1 ≤ j′ ≤ a. In this case, the conclusion of Theorem 3 still holds. I.e., with

probability at least 1− 2a exp
(
− λ2

2(bσn+2βλ)

)
,

Zj(i) ≤ nyj(i/n) + 3λe2Li/n

for all 1 ≤ j ≤ a and 0 ≤ i ≤ min{I, σn}.

Proof of Corollary 4. Let I∗ be the first i ≥ 0 such that

Zj′(i) > nyj′(i/n) + 3λe2Li/n

for some 1 ≤ j′ ≤ a. Clearly, I∗ is a stopping time adapted to (Hi)
∞
i=0. Moreover, by the

assumptions of the corollary, Conditions 1. and 2. hold for each 0 ≤ i ≤ min{I∗, I, σn} and

1 ≤ j ≤ a. Thus, Theorem 3 implies that with probability at least 1− 2a exp
(
− λ2

2(bσn+2βλ)

)
,

Zj(i) ≤ nyj(i/n) + 3λe2Li/n

for all 1 ≤ j ≤ a and 0 ≤ i ≤ min{I, I∗, σn}. Since the preceding event holds if and only if
I∗ > min{I, σn}, the corollary is proven.

3 Proving Theorem 3

Before proceeding to the proof of Theorem 3, we provide some intuition for our approach by
presenting a proof of the deterministic setting (i.e., Theorem 2). The notation and structure
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of the proof is intentionally chosen so as to relate to the analogous approach taken in the
proof of Theorem 3. Moreover, the main claim we prove can be viewed as an approximate
version of Theorem 2, in which the upper bounds on zj(0) and z′j only hold up to an additive
constant δ > 0.

Proof of Theorem 2. Let us assume that c = 0 is the boundary of the domain, and L is a
Lipschitz constant for the cooperative functions (fj)

a
j=1. We shall prove the following: Given

an arbitrary δ > 0, if

z′j(t) ≤ f(t, zj(t)) + δ, zj(0) ≤ yj(0) + δ (14)

for all 1 ≤ j ≤ a and t ≥ 0, then

zj(t) ≤ yj(t) + δeLt (15)

for each 1 ≤ j ≤ a and t ≥ 0. Since (14) holds each δ > 0 under the assumptions of
Theorem 2, so must (15). This will imply that zj(t) ≤ yj(t) for each 1 ≤ j ≤ a and t ≥ 0,
thus completing the proof.

In order to prove that (14) implies (15), define

g(t) := 2δeLt, sj(t) := zj(t)− (yj(t) + g(t)), Ij(t) := [yj(t), yj(t) + g(t)).

It suffices to show that max1≤j≤a sj(t) ≤ 0 for all t ≥ 0. Observe first that sj(0) = zj(0) −
yj(0) − g(0) ≤ −δ < 0 for all 1 ≤ j ≤ a. Suppose for the sake of contradiction that there
exists some 1 ≤ j′ ≤ a such that sj′(t) > 0 for some t > 0. In this case, there must be some
value t1 with sj′(t1) = 0 and max1≤j≤a sj(t) < 0 for all t < t1. Furthermore, there must be
some t0 < t1 such that sj′(t) ∈ [−g(t), 0) for all t0 ≤ t < t1. Thus, for t0 ≤ t < t1 we have
that

− g(t) ≤ zj′(t)− [yj′(t) + g(t)] < 0 =⇒ yj′(t) ≤ zj′(t) < yj′(t) + g(t), (16)

and so

fj′
(
t, z1(t), . . . za(t)

)
≤ fj′

(
t, y1(t) + g(t), . . . , zj′(t), . . . , ya(t) + g(t)

)

≤ fj′
(
t, y1(t), . . . , ya(t)

)
+ Lg(t) (17)

where the first line is by cooperativity of the functions fj and the second line is by the
Lipschitzness of fj′ applied to (16). As such, for all t ∈ [t0, t1),

s′j′(t) = z′j′(t)− y′j′(t)− g′(t)

= fj′
(
t, z1(t), . . . , za(t)

)
− fj′

(
t, y1(t), . . . , ya(t)

)
− g′(t)

≤ Lg(t)− g′(t) = 0

where the last line uses (17). But now we have a contradiction: sj′(t0) ∈ [−g(t0), 0) so it is
negative, s′j′(t) ≤ 0 on [t0, t1), and yet sj′(t1) = 0.
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Our proof of Theorem 3 is based partly on the critical interval method. Similar ideas were
used by used by Telcs, Wormald and Zhou [10] as well as Bohman, Frieze and Lubetzky [2]
(whose terminology we use here). For a gentle discussion of the method see the paper
of the first author and Dudek [1]. Roughly speaking, the critical interval method allows
us to assume we have good estimates of key variables during the very steps that we are
most concerned with those variables. Historically this method has been used with more
standard applications of the differential equation method in order to exploit self-correcting
random variables, i.e. a variable with the property that when it strays significantly from its
trajectory, its expected one-step change makes it likely to move back toward its trajectory.
For such a random variable, knowing that it lies in an interval strictly above (or below) the
trajectory gives us a more favorable estimate for its expected one-step change. In our setting
we use the method for a similar but different reason. In particular since we can only hope
for one-sided bounds, we may as well ignore our random variables when they are far away
from their bounds (in any case, we do not have or need good estimates for their expected
one-step changes etc. during the steps when all variables are far from their bounds).

We give an analogy. A rough proof sketch for Theorem 2 is as follows: in order to have
zj(t) > yj(t) for some t there must be some time interval during which zj ≈ yj and during
that interval zj must increase significantly faster than yj, which contradicts what we know
about their derivatives. An analogous proof sketch for Theorem 3 is as follows: in order for
Zj(i) to violate its upper bound, it must first enter a critical interval which we will define to
be near the upper bound, and then Zj must increase significantly (more than we expect it
to) over the subsequent steps, which while possible, is unlikely.

Proof of Theorem 3. Fix 0 ≤ i ≤ σn, and set m := σn, t = ti = i/n, and g(t) := 3λe2Lt for
convenience. Define

Sj(i) : = Zj(i)− (nyj(t) + g(t)), Xj(i) :=
i−1∑

k=0

E[∆Sj(k) | Hk],

Mj(i) : = Sj(0) +

i−1∑

k=0

(∆Sj(k)− E[∆Sj(k) | Hk]) ,

so that Sj(i) = Xj(i) + Mj(i), (Mj(i))
m
i=0 is a martingale and Xj(i) is Hi−1-measurable

(i.e. (Xj(i) + Mj(i))
m
i=0 is the Doob decomposition of (Sj(i))

m
i=0). Note that we can view

Sj(i)/n as the random analogue of sj(t) = mj(t) + xj(t) from the proof of Theorem 2. In
the previous deterministic setting, the decomposition sj(t) = mj(t) + xj(t) is redundant,
as mj(t) = sj(0), and so xj(t) and sj(t) differ by a constant. In contrast, Mj(i) is Sj(0),
plus

∑i−1
k=0 (∆Sj(k)− E[∆Sj(k) | Hk]), the latter of which we can view as introducing some

random noise. We handle this random noise by showing that Mj(i) is typically concentrated
about Sj(0) due to Freedman’s inequality (see Theorem 7 in Appendix A). We refer to this
as the probabilistic part of the proof. Assuming that this concentration holds, we can upper
bound Zj(i) by nyj(t) + g(t) via an argument which proceeds analogously to the proof of
Theorem 2. This is the deterministic part of the proof.

Beginning with the probabilistic part of the proof, we restrict our attention to 0 ≤ i <
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min{I,m}. Observe first that

∆Mj(i) = ∆Sj(i)− E[∆Sj(i) | Hi]

= ∆[Zj(i)− (nyj(t) + g(t))]− E[∆[Zj(i)− (nyj(t) + g(t))] | Hi]

= ∆Zj(i)− E[∆Zj(i) | Hi], (18)

and so by Condition 1. ,

|∆Mj(i)| ≤ |∆Zj(i)|+ |E[∆Zj(i) | Hi]| ≤ 2β.

Also, Var[∆Mj(i) | Hi] = E[(∆Zj(i)− E[∆Zj(i) | Hi])
2 | Hi]. Thus,

Var[∆Mj(i) | Hi] = E[∆Zj(i)
2 | Hi]− E[∆Zj(i) | Hi]

2

≤ E[∆Zj(i)
2 | Hi]

≤ b by Condition 1.

We can therefore apply Theorem 7 to get that

P(∃ 0 ≤ j ≤ a, 0 ≤ i ≤ min{I,m} : |Mj(i)−Mj(0)| ≥ λ) ≤ 2a exp

(
−

λ2

2(bm + 2βλ)

)
. (19)

Suppose the above event does not happen i.e., for all 0 ≤ j ≤ a, 0 ≤ i ≤ min{m, I} we
have that |Mj(i)−Mj(0)| < λ. We will show that we also have Zj(i) ≤ nyj(t) + g(t) for all
0 ≤ i ≤ min{m, I} and 1 ≤ j ≤ a (equivalently, maxj Sj(i) ≤ 0 for all 0 ≤ i ≤ min{m, I}).
This implication is the deterministic part of the proof. By combining it with the probability
bound of (19), this will complete the proof of Theorem 3.

Suppose for the sake of contradiction that i′ is the minimal integer such that 0 ≤ i′ ≤
min{m, I} and Zj(i

′) > nyj(ti′) + g(ti′) for some j. Define the critical interval

Ij(i) := [nyj(t), nyj(t) + g(t)] .

First observe that since g(0) := 3λ > λ, Condition 3. implies that i′ > 0 (and so i′ − 1 ≥ 0.)
We claim that Zj(i

′ − 1) ∈ Ij(i
′ − 1). Indeed, note that by the minimality of i′ we have

that Zj(i
′ − 1) ≤ nyj(ti′−1) + g(ti′−1). On the other hand, |y′j| = |fj| ≤ B and so each yj is

B-Lipschitz. Thus, since λ ≥ β +B (by assumption),

Zj(i
′ − 1) ≥ Zj(i

′)− β > nyj(ti′) + g(ti′)− β

≥ nyj(ti′−1) + 3λ− β −B

≥ nyj(ti′−1).

As a result, Zj(i
′ − 1) ∈ Ij(i

′ − 1). Now let i′′ ≤ i′ − 1 be the minimal integer with the
property that for all i′′ ≤ i ≤ i′ − 1, we have that Zj(i) ∈ Ij(i). Then Zj(i

′′ − 1) /∈ Ij(i
′′ − 1)

and by the minimality of i′ we must have that Zj(i
′′ − 1) < nyj(ti′′−1). By once again using

the fact that yj is B-Lipschitz,

Zj(i
′′) ≤ Zj(i

′′ − 1) + β < nyj(ti′′−1) + β ≤ nyj(ti′′) + β +B. (20)

9



Now, since Zj(i
′) > nyj(ti′) + g(ti′), we can apply (20) to get that

Sj(i
′)− Sj(i

′′) = (Zj(i
′)− nyj(ti′)− g(ti′))− (Zj(i

′′)− nyj(ti′′)− g(ti′′))

> g(ti′′)− β − B

≥ 3λ− β − B. (21)

Intuitively, (21) says that Sj(i) increases significantly between steps i′′ and i′. We will now
argue that E[∆Sj(i)] is nonpositive between steps i′′ and i′. Informally, by scaling by n and
interpreting E[∆Sj(i)] as the “derivative” of Sj(i)/n evaluated at i/n, this will allow us to
derive a contradiction in an analogous way as in the final part of the proof of Theorem 2.

Observe first that for each i′′ ≤ i ≤ i′ − 1, we have that

E[∆Sj(i) | Hi] = E[∆Zj(i) | Hi]−∆nyj(t)−∆g(t)

≤ fj(t, Z1(i)/n, . . . Za(i)/n) + δ

− fj(t, y1(t), . . . , ya(t)) + (L+BL)n−1 − n−1g′(t) (22)

where the first line is by definition and line (22) will now be justified. The first two terms
follow since by Condition 2, (t, Z1(i)/n, . . . Za(i)/n) ∈ D, and

E[∆Zj(i) | Hi] ≤ fj(t, Z1(i)/n, . . . Za(i)/n) + δ.

For the third and fourth terms of (22), note that

∆nyj(t) = n[yj(ti+1)− yj(ti)] = n

∫ ti+1

ti

y′j(τ) dτ

= n

∫ ti+1

ti

fj(τ, y1(τ), . . . , ya(τ)) dτ

≥ n

∫ ti+1

ti

fj(t, y1(ti), . . . , ya(ti))− L|τ − ti| − L|yj(τ)− yj(ti)| dτ

≥ n

∫ ti+1

ti

fj(t, y1(ti), . . . , ya(ti))− (L+BL)|t− ti| dt

≥ fj(t, y1(ti), . . . , ya(ti))− (L+BL)n−1

For the last term of (22), we have that

∆g(t) = 3λ
(
e2Lti+1 − e2Lti

)
= 3λe2Lti

(
e2L/n − 1

)

≥ 3λe2Lti
(
2L

n

)
= n−1g′(t).

Observe now that by cooperativity, fj(t, Z1(i)/n, . . . Za(i)/n) is upper bounded by

fj

(
t,
ny1(t) + g(t)

n
, . . . ,

nyj−1(t) + g(t)

n
,
Zj(i)

n
,
nyj+1(t) + g(t)

n
, . . . ,

nya(t) + g(t)

n

)
. (23)

Now, since Zj(i) ∈ Ij(i), we can apply the Lipschitzness of fj to (23) to get that

fj(t, Z1(i)/n, . . . Za(i)/n) ≤ fj(t, y1(t), . . . , ya(t)) + Lg(t)/n.

10



As such, applied to (22),

E[∆Sj(i) | Hi] ≤ fj(t, Z1(i)/n, . . . Za(i)/n) + δ − fj(t, y1(t), . . . , ya(t)) + (L+BL)n−1 − n−1g′(t)

≤ Ln−1g(t) + δ − n−1g′(t) + (L+BL)n−1

= Ln−1g(t) + δ − n−12Lg(t) + (L+BL)n−1

≤ −[Lg(t)− (L+BL+ δn)]n−1

≤ −[3Lλ− (L+BL+ δn)]n−1 (24)

≤ 0, (25)

where the final line follows since λ ≥ L+BL+δn
3L

.
Therefore, for i′′ ≤ i ≤ i′ − 1 we have that

0 ≥ E[∆Sj(i) | Hi] = E[∆Xj(i) | Hi] + E[∆Mj(i) | Hi] = ∆Xj(i)

since (Mj(i))
m
i=0 is a martingale and ∆Xj(i) is Hi-measurable. In particular,

Xj(i
′) ≤ Xj(i

′′). (26)

At this point, we use the event we assumed regarding (Mj(i))
m
i=0 (directly following (19)) to

get that
Mj(i

′)−Mj(i
′′) ≤ |Mj(i

′)−Mj(0)|+ |Mj(i
′′)−Mj(0)| ≤ 2λ. (27)

But now we can derive our final contradiction (explanation follows):

3λ− β −B < Sj(i
′)− Sj(i

′′)

= Xj(i
′)−Xj(i

′′) +Mj(i
′)−Mj(i

′′)

≤ 2λ.

Indeed the first line is from (21), the second is by the Doob decomposition, and the last line
follows from (26) and (27). But the last line is a contradiction since we chose λ ≥ β +B.

4 Weakening the Assumptions of Theorem 2

There are additional assumpions we can make when we check Conditions a)-c) on the fj and
Conditions 1. and 2. of Theorem 2. We will list these assumptions below. The fact that
it suffices to check the conditions under these assumptions follows from checking that our
proof only uses the conditions when the assumptions hold.

• Condition a): fj only needs to be L-Lipschitz on the set of points

D∗ :=
{
(t, z1, . . . , za) ∈ R

a+1 : 0 ≤ t ≤ σ, yj′(t) ≤ zj′ ≤ yj′(t)+g(t) for 1 ≤ j′ ≤ a
}
⊆ D.

• Condition b): We only use this condition to conclude that the system (11) has a unique
solution and that those solutions yj are B-Lipschitz. So, it suffices to just check directly
that (11) has a unique solution that is B-Lipschitz.
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• Condition c): It suffices to have that fj(t, z1, . . . za) is upper bounded by

fj

(
t,
ny1(t) + g(t)

n
, . . . ,

nyj−1(t) + g(t)

n
, zj ,

nyj+1(t) + g(t)

n
, . . . ,

nya(t) + g(t)

n

)

whenever zj′ ≤ yj′(t) + g(t)/n for all j′ and zj ≤ yj(t).

• Condition 2. : It suffices to have the following for each 1 ≤ j ≤ a. If Zj′(i) ≤ nyj′(i/n)+
g(i/n) for all 1 ≤ j′ ≤ a and Zj ≥ nyj(i/n), then (i/n, Z1(i)/n, . . . Za(i)/n) ∈ D and

E[∆Zj(i) | Hi] ≤ fj(i/n, Z1(i)/n, . . . Za(i)/n) + δ

5 Recovering a Version of Wormald’s Theorem

In this section we recover the standard (two-sided) differential equation method of Wormald
[13]. The statement resembles the recent version given byWarnke [12] in the sense that it does
not use any asymptotic notation and instead gives explicit bounds for error estimates and
failure probabilities. Like Warnke’s proof, ours has a probabilistic part and a deterministic
part. Our probabilistic part is much the same as Warnke’s in that we apply a deviation
inequality (though we use Freedman’s theorem rather than the Azuma-Hoeffding inequality)
to the martingale part of a Doob decomposition. That being said, the deterministic part of
our argument is quite different than the deterministic part of Warnke’s argument. In fact,
we were not able to adapt Warnke’s argument to the one-sided setting.

Given a ∈ N, suppose that D ⊆ R
a+1 is a bounded domain, and for 1 ≤ j ≤ a, let

fj : D → R. We assume that the following hold for each j:

1. fj is L-Lipschitz, and

2. |fj| ≤ B on D.

Given (0, ỹ1, . . . , ỹa) ∈ D, assume that y1(t), . . . , ya(t) is the (unique) solution to the system

y′j(t) = fj(t, y1(t), . . . , ya(t)), yj(0) = ỹj. (28)

for all t ∈ [0, σ] where σ is a positive value. Note that unlike in Theorem 3, we make a
further assumption involving σ below in Theorem 5.

Theorem 5. Suppose for each 1 ≤ j ≤ a we have a sequence of random variables (Yj(i))
∞
i=0

which is adapted to the filtration (Hi)
∞
i=0. Let n ∈ N, and β, b, λ, δ > 0 be any parameters such

that λ ≥ L+BL+δn
3L

. Moreover, assume that σ > 0 is any value such that (t, y1(t), . . . , ya(t))
has ℓ∞-distance at least 3λe2Lt/n from the boundary of D for all t ∈ [0, σ). Given an arbitrary
stopping time I ≥ 0 adapted to (Hi)

∞
i=0, suppose that the following properties hold for each

0 ≤ i < min{I, σn}:

1. The ‘Boundedness Hypothesis’: maxj |∆Yj(i)| ≤ β, and maxj E[(∆Yj(i))
2 | Hi] ≤ b.
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2. The ‘Trend Hypothesis’: If (i/n, Y1(i)/n, . . . Ya(i)/n) ∈ D, then
∣∣∣E[∆Yj(i) | Hi]− fj(i/n, Y1(i)/n, . . . Ya(i)/n)

∣∣∣ ≤ δ

for each 1 ≤ j ≤ a.

3. The ‘Initial Condition’: |Yj(0)− yj(0)n| ≤ λ for all 1 ≤ j ≤ a.

Then, with probability at least 1− 2a exp
(
− λ2

2(bσn+2βλ)

)
,

|Yj(i)− nyj(i/n)| ≤ 3λe2Li/n (29)

for all 1 ≤ j ≤ a and 0 ≤ i ≤ min{I, σn}.

We conclude the section with an extension of Theorem 5 analogous to Corollary 4 of
Theorem 3. We omit the proof, as it follows almost identically to the proof of Corollary 4.

Corollary 6 (of Theorem 5). Suppose that in the terminology of Theorem 5, Conditions 1.
and 2. are only verified for each 0 ≤ i ≤ min{I, σn} which satisfies |Yj′(i) − nyj′(i/n)| ≤
3λe2Li/n for all 1 ≤ j′ ≤ a. In this case, the conclusion of Theorem 5 still holds. I.e., with

probability at least 1− 2a exp
(
− λ2

2(bσn+2βλ)

)
,

|Yj(i)− nyj(i/n)| ≤ 3λe2Li/n

for all 1 ≤ j ≤ a and 0 ≤ i ≤ min{I, σn}.

Proof of Theorem 5. Fix 0 ≤ i ≤ σn, and again setm := σn, t = ti = i/n, and g(t) := 3λe2Lt

for convenience. Define

S±
j (i) := Yj(i)− (nyj(t)± g(t)),

X±
j (i) :=

i−1∑

k=0

E[∆S±
j (k) | Hk],

M±
j (i) := S±

j (0) +

i−1∑

k=0

(
∆S±

j (k)− E[∆S±
j (k) | Hk]

)

so that (X±
j (i) +M±

j (i))
m
i=0 is the Doob decomposition of (S±

j (i))
m
i=0. Note that

∆S±
j (k)− E[∆S±

j (k) | Hk] = ∆Yj(k)− E[∆Yj(k) | Hk],

and so M+
j (i) is almost the same as M−

j (i). More precisely, we have

M±
j (i) = Mj(i)∓ g(0)

where

Mj(i) := Yj(0)− nyj(0) +
i−1∑

k=0

(∆Yj(k)− E[∆Yj(k) | Hk])
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(which is also a martingale). As in the proof of Theorem 3, we have |∆Mj(i)| ≤ 2β and
Var[∆Mj(i) | Hi] ≤ b. Now, by Theorem 7 we have that

P

(
∃ 0 ≤ j ≤ a, 0 ≤ i ≤ m such that |Mj(i)−Mj(0)| ≥ λ

)
≤ 2a exp

(
−

λ2

2(bm+ 2βλ)

)
.

(30)
Suppose that the event above does not happen, so for all 0 ≤ j ≤ a, 0 ≤ i ≤ m we have that
|Mj(i)−Mj(0)| < λ. We will show that we also have |Yj(i)−nyj(t)| ≤ g(t) for all 0 ≤ i ≤ m.
Note that yj is B-Lipschitz as before. Define the critical interval

Ij(i) := [nyj(t)− g(t), nyj(t) + g(t)] .

Suppose for the sake of contradiction that i′ is minimal with 0 ≤ i′ ≤ m and Yj(i
′) /∈ Ij(i

′)
for some j. We will consider the case where Yj(i

′) > nyj(t) + g(t) (the case where Yj(i
′) <

nyj(t)−g(t) is handled similarly with some inequalities reversed). In other words, S+
j (i

′) > 0.
First observe that since g(0) := 3λ, Condition 3. implies S+

j (0) ≤ −2λ. In particular, i′ > 0
and

S+
j (i

′)− S+
j (0) > 2λ. (31)

For 0 ≤ i < i′, we have (explanation follows)

E[∆S+
j (i) | Hi] = E[∆Yj(i) | Hi]−∆nyj(t)−∆g(t)

≤ fj(t, Y1(i)/n, . . . Ya(i)/n) + δ − fj(t, y1(t), . . . , ya(t)) + (L+BL)n−1 − n−1g′(t)

≤ Ln−1g(t) + δ + (L+BL)n−1 − n−1g′(t)

≤ −[3Lλ− (L+BL+ δn)]n−1

≤ 0.

Indeed, the first line is by definition and the second line follows just like (22), with the
minor caveat that we now must show that (t, Y1(i)/n, . . . , Ya(i)/n) is within the domain
D to apply Condition 2 (recall that in Theorem 3 this is simply assumed). Observe that
by the definition of σ, (t, y1(t), . . . , ya(t)) is in D and at least ℓ∞-distance g(t)/n from the
boundary of D. On the other hand, since Yj′(i) ∈ Ij′(i) for all 1 ≤ j′ ≤ a, we know that
|Yj′(i)/n− yj′(t)| ≤ g(t)/n for all 1 ≤ j′ ≤ a. Thus, (t, Y1(i)/n, . . . Ya(i)/n) ∈ D, and so

E[∆Yj(i) | Hi] ≤ fj(t, Y1(i)/n, . . . , Ya(i)/n) + δ

by Condition 2. The remaining justification is much the same as before. Since fj is
L-Lipschitz and |Yj′(i) − nyj′(t)| ≤ g(t) for all j′, we have fj(t, Y1(i)/n, . . . Ya(i)/n) ≤
fj(t, y1(t), . . . , ya(t)) + Ln−1g(t) and the third line follows. The fourth and fifth lines follow
just as (24) and (25). Therefore, for 0 ≤ i < i′ we have that

0 ≥ E[∆S+
j (i) | Hi] = E[∆X+

j (i) | Hi] + E[∆M+
j (i) | Hi] = ∆X+

j (i)

since (M+
j (i))

∞
i=0 is a martingale and ∆X+

j (i) is Hi-measurable. In particular

X+
j (i

′) ≤ X+
j (0). (32)
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But now we can derive our final contradiction (explanation follows):

2λ < S+
j (i

′)− S+
j (0)

= X+
j (i

′)−X+
j (0) +Mj(i

′)−Mj(0)

≤ λ.

Indeed, the first line is from (31), the second line is by the Doob decomposition, and the last
follows from (32) and our assumption that the event described on line (30) does not happen.
Of course 2λ < λ is a contradiction and we are done.
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A Martingale Concentration

Suppose that (Hi)
∞
i=0 is an increasing sequence of σ-algebras (i.e., Hi−1 ⊆ Hi for all i ≥ 1.)

Moreover, let (Mi)
∞
i=0 be a sequence of random variables adapted to (Hi)

∞
i=0 (i.e., each Mi is

Hi-measurable), and let I be an arbitrary stopping time adapted to (Hi)
∞
i=0) (i.e., {I = i}

is Hi-measurable for each i ≥ 0). Recall that ∆Mi := Mi+1 − Mi and Var(∆Mi | Hi) :=
E[∆M2

i | Hi]− E[∆Mi | Hi]
2 for i ≥ 0.

Theorem 7 (Freedman’s Inequality [5]). Fix m ∈ N and β, b ≥ 0. Assume that for each
0 ≤ i < m, E[∆Mi | Hi] = 0, |∆Mi| ≤ β, and Var(∆Mi | Fi) ≤ b. Then, for any 0 < ε < 1,

P(∃ 0 ≤ i ≤ m : |Mi −M0| ≥ ε) ≤ 2 exp

(
−

ε2

2(bm+ βε)

)
.

Moreover, if I is an arbitrary stopping time adapted to (Hi)
∞
i=0, and the above conditions

regarding (Mi)
∞
i=0 are only verified for all 0 ≤ i < min{I,m}, then

P(∃ 0 ≤ i ≤ min{I,m} : |Mi −M0| ≥ ε) ≤ 2 exp

(
−

ε2

2(bm + βε)

)
.

16


	1 Introduction
	1.1 Motivating Applications

	2 Main Theorem
	3 Proving thm:deonesided
	4 Weakening the Assumptions of Theorem 2
	5 Recovering a Version of Wormald's Theorem
	A Martingale Concentration

